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Abstract 
Katz and Shapiro (1985) study systems compatibility in settings with one-sided platforms and 
direct network effects. We consider systems compatibility in settings with two-sided platforms 
and indirect network effects to develop an explanation why markets with two-sided platforms 
are often characterized by incompatibility with one dominant player who may subsidize access 
to one side of the market. We find that incompatibility gives rise to asymmetric equilibria with 
a dominant platform that earns more than under compatibility. We also find that 
incompatibility generates larger total welfare than compatibility when horizontal differences 
between platforms are small. 
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1 Introduction

The last three decades have witnessed unprecedented growth in network industries such as

video games, computers, credit cards, media, or telecommunications. These industries are

often organized around physical or virtual platforms that enable distinct groups of agents

to interact with one another and are commonly referred to as two-sided markets or markets

with two-sided platforms (Evans, 2003, and Evans and Schmalensee, 2007). An operating

systems developer such as Microsoft, for example, provides a software platform that makes

possible the completion of value-creating transactions between independent software vendors

and users.

It is now well-known that platforms are characterized by the presence of inter-group

network effects and that these constitute a central feature affecting pricing by platform

providers. For example, when pricing its operating systems and software development kits,

Microsoft must take into account that the larger the number of applications expected to

run on Windows, the more willing users are to adopt it. Likewise, developers’ incentives to

write Windows applications grow with the number of users who are expected to adopt that

operating system.

A key attribute of these markets that determines the intensity and scope of network

effects is whether competing platforms are compatible or not. In a seminal paper, Katz

and Shapiro (1985) study systems compatibility in markets with one-sided platforms.1 The

literature on markets with two-sided platforms, however, has largely ignored the effects of

platform (in)compatibility on market outcomes, which constitutes the focus of our paper.

The contribution of this paper is to develop an explanation of why markets with two-

sided platforms are often characterized by incompatibility with one dominant player who

may choose to subsidize access to one side of the market. Prominent examples include

the personal computer or digital music distribution industries, which are dominated by

Microsoft’s Windows and Apple’s iTunes, respectively. At the normative level, we shed light

on the nature of the social inefficiencies that competitive pricing in markets with two-sided

platforms generate.

We extend the Katz-Shapiro framework to model a situation in which two platform

providers mediate between developers of products based on the platform and users of such

products. This may be representative of hardware/software industries such as personal com-

puters, smart phones, or videogames. Developers and users first trade with the platform

1In their setting, platforms set access prices to users but not to software developers. Moreover, there is
no transaction between independent software vendors and users.
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providers by adopting one of the two platforms. Platforms are assumed to be horizontally

differentiated from the users’ viewpoints. After having gained access to one platform, users

buy applications from developers under oligopolistic conditions that, to a large extent, de-

pend on the pricing structures set by the platform providers.

We compare the nature of platform competition under application compatibility and

incompatibility. Under compatibility, active developers can sell their applications to all

the users, regardless of the platform they have adopted.2 As a result, developers do not

benefit from platform-specific network effects and perceive both platforms as homogeneous

in that they give access to the same pool of users and number of competitors. Platform

homogeneity leads to intense competition for developers: platforms set developer access prices

equal to the marginal cost to serve them. Marginal cost pricing implies plentiful entry by

developers and low application prices. Under compatibility, platforms cannot vertically

differentiate based on the number of applications because users foresee having access to a

unique pool of applications. However, because platforms are assumed to be horizontally

differentiated, platform providers have some pricing power on the user side. Moreover,

because application prices are low in this case, there is large potential value that can be

extracted from users through platform access prices. Put differently, access prices to users

end up being high because (i) platforms are differentiated horizontally and (ii) inter-group

network effects are exploited very intensely due to fierce competition for developers. We

also find that compatibility gives rise to a unique equilibrium and that this equilibrium is

symmetric.

The nature of platform competition changes dramatically when platforms are incompat-

ible. To begin, there is a unique symmetric equilibrium under incompatibility, but there

are also asymmetric equilibria. The symmetric equilibrium under incompatibility exhibits

softer price competition for developers compared to the case in which platforms are compat-

ible. Less intense competition for developers leads to reduced entry and higher application

prices. This implies that less user surplus is generated and, thus, access prices to users end

up being lower than in the case of compatible platforms.3 In fact, when horizontal differ-

2More precisely, under (full) platform compatibility, an application sold by a developer is functional on
any platform, no matter with which platform provider the developer traded in the first period. Under
platform incompatibility, an application sold by a developer is valuable only on the platform sold by the
platform provider with which such developer traded.

3That platform compatibility softens price competition for users in a setting with two-sided platforms is
consistent with earlier results. Katz and Shapiro (1985), for instance, derive this result in a setting with
network effects and one-sided platforms and Matutes and Regibeau (1988) and Economides (1989) in the
absence of network effects.
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entiation between platforms is mild and competition for users intense, platform providers

end up subsidizing user entry. An important feature of the symmetric equilibrium under

incompatibility is that it results in lower platform profits than under compatibility, even if

platform-access fees charged to developers are above marginal cost.

Incompatibility is a pervasive feature of many markets with two-sided platforms. This

raises the question of why platform providers do not make their platforms compatible if equi-

librium profits are higher in that regime. To address this question we study some asymmetric

equilibria that are present under incompatibility. In these equilibria, users and developers

form expectations favorable to one of the platforms, and hence such platform is able to cor-

ner the market by pricing the competitor out. When horizontal differentiation is weak, such

equilibria yield higher profits for the winning platform compared to profits in the unique

equilibrium under compatibility. Hence, we find that it is the quest for market dominance

that prevents providers of platforms from agreeing to make them compatible. We conclude

that incompatibility is associated with market dominance, as happens in Katz and Shapiro

(1985). Unlike their one-sided setting, however, our model suggests that tipping may be

grounded upon user subsidization. We also show that profits for the dominant platform are

decreasing in the strength of horizontal differentiation. In fact, when horizontal differentia-

tion is strong, profits in the symmetric incompatible equilibrium may be larger than those

of the dominant platform in the asymmetric case. The reason is that stronger differentiation

makes it harder for a platform to corner the market, since it has to attract users whose

appeal for such a platform is lower.

Our model also allows for detailed social welfare analysis. We find that when platforms

are incompatible, the underexploitation of the inter-group network effects originated on

the user side results in fewer developers than socially desirable. Because the providers of

incompatible platforms cannot capture all the gains that accrue to users if more developers

enter, there is no point in promoting too much entry by developers. The result of insufficient

entry by developers is reversed under platform compatibility. The fierce price competition for

developers that takes place when platforms are compatible (marginal cost pricing) together

with the presence of fixed entry costs for developers, results in too many developers relative

to what is socially desirable.

As in Katz and Shapiro (1985), we find that a welfare-maximizing social planner prefers

compatibility over incompatibility if she can control access prices because welfare-enhancing

network effects can be generated at a lower cost under compatibility. However, the social

welfare that arises when platforms compete against one another (in the absence of a social
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planner) may be larger with incompatibility. We find that the social welfare comparison is

ambiguous when platforms play the unique symmetric equilibrium under compatibility and

incompatibility. Compatibility leads to more intense exploitation of inter-group network

effects but also to excessive entry. The trade off between the benefits of network effects and

the costs of entry is resolved differently depending on the intensity of users’ preferences for

the horizontal attributes of platforms. We also find that competition under compatibility

may lead to lower welfare than market dominance by an incompatible platform. Specifically,

a monopolistic platform subject to a credible threat of entry is socially desirable if horizontal

differentiation is not too strong.

1.1 Literature

We contribute to the literature on systems compatibility and oligopolistic competition, ini-

tiated by Katz and Shapiro’s (1985) path-breaking work and continued by, amongst others,

Katz and Shapiro (1986), Economides and Flyer (1997), Crémer, Rey and Tirole (2000), and

Malueg and Schwartz (2006). Katz and Shapiro (1994) present a detailed literature review.

Our paper is most closely related to Katz and Shapiro (1985) but differs in several

important respects. Our setup deals with two-sided platforms that are horizontally differ-

entiated and that play an access pricing game, while theirs studies one-sided platforms that

are undifferentiated and that play a quantity game. Their setting is most appropriate for

the study of compatibility and incompatibility in environments with direct network effects,

while ours intends to capture situations where indirect network effects are at play. Because

we consider two-sided platforms, we are able to draw additional conclusions on the nature

of platform competition and its impact on welfare under the different intellectual property

regimes that we consider. These additional results are not straightforward extensions of

Katz and Shapiro’s (1985) one-sided setting. For example, we find that platform providers

compete fiercely for developers when platforms are compatible and for users when they are

incompatible. In fact, when horizontal differences across platforms are feeble, incompatible

platforms are sold below marginal cost to users. Our model predicts that user subsidization

may occur only when platforms are incompatible; compatible platforms are never sold below

cost to either side. These results, which appear consistent with anecdotal evidence that

platforms such as videogame systems are typically priced below marginal cost for users, can

only be obtained in a model that explicitly considers both sides of the market. Another

aspect that our two-sided setting allows us to study are the effects of developer entry on

social efficiency, which differ depending on whether platforms are compatible or not.
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Our modeling approach is that of the recent literature on intermediation by firms in

two-sided markets. Pioneering work by Spulber (1996, 1999) examines how firms establish

markets acting as intermediaries between buyers and sellers. The platforms that we study

also establish markets as they bring users and developers together. This literature has

flourished partly on the basis of industry-specific models. Rochet and Tirole (2003), for

example, is inspired by the credit card market, Armstrong (2006) captures well the economics

of shopping malls or newspapers, and Hagiu (2009) maps to competition between providers

of videogame systems. General results have been derived by Spulber (2006), however, who

models centralized and decentralized two-sided markets through network theory. Likewise,

Rochet and Tirole (2006) propose a formal definition of two-sided markets and present

a general framework for the analysis of such markets. Finally, Weyl (2009) develops a

general theory of monopoly pricing of networks with weak constraints on the nature of user

heterogeneity.

Within this literature, our paper is closest to those in which agents on both sides first

trade with the platform providers and then with each other. Caillaud and Jullien (2001,

2003) examine matchmaking intermediation services, such as those provided by dating or

real estate agencies, in a model with ex ante identical matchmakers that bear no fixed

costs. These papers dealing with incompatible platforms assume that once a match is made,

agents realize all gains from trade, and pay special attention to equilibria in which a platform

provider prices a competitor out of the market. Such dominant firm equilibria are supported

by optimistic rational expectations of agents on both sides of the market, according to which

every agent expects everyone else to interact with the dominant firm. Our paper also high-

lights the importance of agents’ expectations in the emergence of dominant firm equilibria

in a somewhat related context. In our model, however, trade between users and developers

is not efficient and several features of the downstream market structure are endogenously

determined.

Our paper is also related to Hagiu (2009), which pioneers the analysis of how platform

pricing structures are affected by consumers’ preferences for product variety in a setting with

monopolistically competitive developers. In a related paper, Hagiu (2006b) focuses on the

efficiency of open (or free access) vs. proprietary platforms, a topic which is of independent

interest to that of platform (in)compatibility. Indeed, platform compatibility is studied by

a few recent papers dealing with two-sided platforms. Orman (2008) studies the effects of

compatibility on competition between proprietary and open two-sided platforms and shows

that compatibility may increase profits for the proprietary platform. We focus on the case
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where both competing platforms are proprietary. Miao (2007) studies two-sided platforms

composed of two components supplied by different producers (such as TV sets and TV

broadcasting equipment) and examines suppliers’ incentives to provide compatibility within

platforms. In contrast, our analysis deals with integrated platform suppliers and is concerned

with application compatibility between platforms.

Our paper takes up one of the extensions suggested by Carrillo and Tan (2006). Us-

ing their terminology, we analyze the equilibrium outcome of a game in which competing

platforms can choose between complete compatibility without standardization and incom-

patibility. If the equilibrium under incompatibility is characterized by both platforms being

active, we show that platforms would have a strong incentive to negotiate complete com-

patibility without standardization.4 However, if incompatibility results in a single platform

dominating the market in equilibrium (an outcome that is more likely when platform hori-

zontal differentiation is low), then there is no incentive to negotiate complete compatibility

without standardization or complete standardization.

The paper is organized as follows. Section 2 describes the two-period platform com-

petition model. In sections 3 and 4 we study competitive interaction between compatible

and incompatible platforms, respectively, focusing on symmetric equilibria. Section 5 stud-

ies asymmetric equilibria and compares profits and welfare under both intellectual property

regimes. Concluding remarks are offered in Section 6.

2 The model

Consider a platform provider, labeled by i, that mediates between developers of products

based on its platform and users of such products. The platform provider could be a supplier

of operating systems, in which case developers would be independent software vendors and

users would be individuals or firms that make use of such applications. The platform provider

sets access prices for both, users and developers. In the case of operating systems providers,

the price charged to users is that of the operating system, while that for developers is the

price of the software development kit or a license fee.5 We denote the access price paid by

users by pUi and that paid by developers by pDi . After users and developers have transacted

with the platform provider, developers compete against one another to sell their applications.

4The incentive to achieve complete standardization (i.e., having compatible platforms which are less
differentiated) would be lower because of platform homogenization.

5Introducing royalties per unit of application sold by developers makes the analysis intractable. Notwith-
standing, we discuss the likely role of royalties in the conclusion.
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A forward-looking platform provider sets pUi and pDi to maximize profits taking into account

the resulting structure of the market for applications.

To analyze this situation formally when two platform providers exist, we set up the

following two-period game which extends Church and Gandal’s (1993) approach to a market

with two-sided platforms. The first period consists of two stages. In the first stage, platform

provider i ∈ {1, 2} posts access prices (pUi , p
D
i ). In the second stage, all potential users and

developers simultaneously decide whether or not to trade with one of the platform providers.

In the second period, developers who traded with platform provider i sell applications to

users who own platform i (in the case of platform incompatibility) or any of the two platforms

(in the case of compatibility).

As usual in multi-period contexts, we focus on (pure strategy) subgame-perfect equilibria

assuming that all agents have rational expectations. We thus solve the model by backwards

induction. Figure 1 illustrates the timing of the game for the incompatible case. The timing

for the compatible case is similar.
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Figure 1: Timing

We make the following assumptions about each player group:

Platform providers. There are two competing platforms that have no stand-alone
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value (e.g., an operating system is valuable only if there are applications that can run on

it). The (constant) marginal cost cU of producing copies of a platform is normalized to zero,

so pUi is to be interpreted as a mark-up. We allow for the possibility that there may be a

positive cost of serving developers (these costs are related to the provision of development

kits and/or the structuring of licensing contracts). We assume that these costs are identical

across platform providers, and we denote them by cD ≥ 0.

Users. Users are assumed to have unit demands for platforms and linear demands

for applications, which are assumed to be homogeneous goods to simplify the analysis by

sidestepping issues related to product variety.6 Specifically, we assume that a unit mass

of (potential) users is uniformly distributed along a Hotelling segment of unit length. We

suppose that the platform provider indexed by 1 is located at the left end of the segment,

whereas that indexed by 2 is located at the right end. Platform providers differ in their

location on the segment but are otherwise identical. Inspired by Novshek (1980), we assume

that user j located at distance sji ∈ [0, 1] from platform i has the following demand for ap-

plications sold at price ρi if she has acquired platform i: qj(ρi, sji) = (1−tsji)(a−bρi) (where

both a and b are positive constants).7 In combination with the heterogeneous locations of

users on [0, 1], parameter t > 0 captures the intensity of horizontal differences regarding the

perceived performance of the platform by the time it is used with the applications sold by

developers: every user has a different demand function for applications, and hence users are

heterogeneous even after acquiring a platform.8 We let xi denote the measure of users who

trade with platform provider i and assume that t < 2/3 to guarantee that the market is

covered.9 Therefore, we shall focus on those situations in which x1 = 1− x2.

It is worth noting that departing from the widely used model of unit demand for ap-

6The main arguments are not dependent on the assumption of homogeneity. We discuss the implications
of product variety for pricing structures in the concluding section.

7A relevant property of this specification is that the sensitivity of user j’s demand to changes in the price
of applications does not depend on differences in the perceived performance of the two competing platforms
(i.e., it does not depend on sji). This property is useful in that it simplifies how first-period behavior affects
competitive behavior in the second period (e.g., the equilibrium prices of applications do not depend on the
number of users attracted by a platform). More complete models must await further research on these issues
which seem far from being easily tractable.

8In our setting, horizontal differences across platforms persist even if they are compatible. For instance,
a videogame console may load games faster and provide higher definition video and sound compared to
another one but may consume more power in doing so. If users differ in the relative weight that they assign
to loading speed, video and sound definition, and power consumption, then the platforms will be horizontally
differentiated even if they can both run the same applications. We discuss in Subsection 5.2.3 how our results
would be affected when horizontal differentiation is weaker under compatibility.

9This is standard in Hotelling models of horizontal differentiation. The analysis when the market is not
covered is available from the authors.
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plications allows us to perform social welfare analysis even if all users purchase one of the

platforms and the market is completely covered. In addition, in markets such as video

games, personal computers, or smart phones, users often purchase one platform only but

buy many applications. Therefore, this aspect of our model is closer to the phenomenon

than a specification where users have unitary demands for both, platforms and applications.

Developers. We suppose that there exist infinitely many potential developers of appli-

cations, all ex ante identical, and free entry. Those who have traded with one of the platform

providers in the first period must also incur a sunk setup cost f ≥ 0 to become active in the

second period. Developers active in the second period produce applications at non-negative

constant marginal cost c, assumed to be smaller than a/b to avoid making the analysis trivial,

and compete à la Cournot. Cournot competition can be interpreted as a reduced-form for

simultaneous capacity choice by developers followed by simultaneous capacity-constrained

price competition amongst them, as shown by Kreps and Scheinkman (1983). We use ni

to denote the number of developers that trade with platform provider i. As customary in

the oligopolistic entry literature (Suzumura and Kiyono, 1987), we will usually ignore the

integer problem and treat the number of developers as a continuous variable.

Cournot competition captures the fact that developers best-respond to one another when

making profit-maximizing choices. Given the concentration levels in developer communities

such as those in video games or personal computers,10 it is likely that players do take into

account each others’ actions when choosing their strategies. Our model reflects this. In

addition, the original work by Katz and Shapiro (1985) on which we build assumes that

platforms play an output game with homogeneous platforms. We make a first step towards

greater realism by adding horizontally differentiated platforms that deal with two sides. In

the conclusion (Section 6) we discuss the effect of adding heterogeneous applications to our

framework.11

In what follows, we distinguish two situations, depending on whether platforms are com-

patible or not. Platforms are compatible if any given application can be used in either

platform. Platforms are incompatible if any given application can only be used in the plat-

form for which it was originally developed.

10For instance, the top seven game developers (in terms of market share) accounted for almost two thirds
of industry sales in the US in 2004.

11Models with both, heterogeneous applications and strategic behavior by developers, have proven in-
tractable.
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3 Compatible platforms

As mentioned above, the game is solved by backwards induction. We begin by solving

for the second period outcomes, given {(pUi , pDi ;xi, ni)}2
i=1. Under compatibility any one

of the ni developers who have traded with platform provider i ∈ {1, 2} sells applications

that can be used by users of the competing platform. User demand for the homogeneous

good sold by developers depends on the location of the user and the platform that she uses.

Letting x1 denote the location of the marginal user who purchased platform provider 1’s

platform, it is immediate that those users to the left of x1 must have traded with 1 as well

by monotonicity. Similarly, letting x2 denote the distance between platform provider 2 and

the marginal user who purchased provider 2’s platform, the users in between must also have

traded with 2. In addition, note that developers produce homogeneous goods regardless of

the platform provider they traded with in the first period, so they must charge the same

market price ρ as dictated by the properties of standard Cournot competition. Because

the demand for applications of user j located at distance sji ∈ [0, xi] from platform i, is

given by qj(ρ, sji) = (1 − tsji)(a − bρ), it follows that aggregate demand for applications

equals Q(ρ) =
∫ x1

0
qj(ρ, sj1)dj +

∫ x2

0
qj(ρ, sj2)dj, and hence aggregate demand for compatible

applications given a market price ρ is equal to

Q(ρ) = [(x1 −
tx2

1

2
) + (x2 −

tx2
2

2
)](a− bρ),

and inverse demand is as follows:

ρ(Q) =
a

b
− 2Q

b[(2x1 − tx2
1) + (2x2 − tx2

2)]
.

Therefore, second-period Cournot competition with n1 + n2 ≡ N developers yields the fol-

lowing equilibrium price for an application:

ρcom =
a+ bcN

b(N + 1)
.

Every developer sells qcom applications, where

qcom =
[(2x1 − tx2

1) + (2x2 − tx2
2)](a− bc)

2(N + 1)
,
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and makes profits equal to

πcom =
[(2x1 − tx2

1) + (2x2 − tx2
2)]

2b

(
a− bc
N + 1

)2

. (1)

For fixed {(pUi , pDi )}2
i=1, the effect of compatibility on developers is two-fold. On the one

hand, developers have access to a larger pool of users than if platforms were not compatible.

On the other, they face more intense competition.

If user j has traded with platform i and is located at distance sij from such platform,

then she attains the following second-period utility:

ucomj (sji) =

∫ a/b

ρcom

(1− tsji)(a− bρ)dρ =
(1− tsji)(a− bρcom)2

2b
=

(1− tsji)
2b

(
(a− bc)N
N + 1

)2

.

(2)

For fixed access prices, compatibility enables users to access a larger pool of developers than

if platforms were not compatible. This concludes the analysis of the second period subgame.

We now solve the first period. There are two stages. Stage one is the price setting stage.

Stage two is the adoption subgame where users and developers choose simultaneously which

platform to join. We are interested in analyzing symmetric equilibria in which platforms set

the same access prices (pU1 = pU2 = pU∗ and pD1 = pD2 = pD∗).

Consider the second stage. Given {(pUi , pDi )}2
i=1, users and developers choose which plat-

form to join. We first study the choice by users. Because we focus on full market coverage,

we have that x1 = 1 − x2. We thus drop subscripts. In this case, the user ĵ indifferent be-

tween trading with platform providers 1 and 2 is at distance x from 1. Because the market

is fully covered, x also denotes the measure of users served by platform provider 1 and 1− x
that of users served by platform provider 2.

For fixed prices pU1 and pU2 , the location of the indifferent user is given by:

ucombj (x)− pU1 = ucombj (1− x)− pU2

or
(1− tx)

2b

(
(a− bc)N
N + 1

)2

− pU1 =
(1− t(1− x))

2b

(
(a− bc)N
N + 1

)2

− pU2 . (3)

Hence, user demand for provider 1’s platform is

x(pU1 , p
U
2 ) =

1

2
+
b(pU2 − pU1 )

t(a− bc)2

(
N + 1

N

)2

. (4)

11



Consider now the developers. The net profit made by a developer who trades with

platform provider i ∈ {1, 2} is

πcom − f − pDi =
(2− t+ 2tx− 2tx2)

2b

(
a− bc
N + 1

)2

− f − pDi ,

where we have suppressed the arguments of x(·) to ease notation. Developers’ profits in the

second period do not depend on the platform they develop for. Thus, both platforms are

perceived as homogeneous by developers and they will choose platform based solely on the

entry fees being charged (pD1 and pD2 ). Bertrand competition for developers implies that the

lowest entry fee will fully determine the number of active developers.12 That is, the following

must be satisfied for any volume of users captured by platform provider i:

(2− t+ 2tx− 2tx2)

2b

(
a− bc
N + 1

)2

− f −min
{
pD1 , p

D
2

}
= 0. (5)

Thus, given {(pUi , pDi )}2
i=1, the equilibrium of the second-stage subgame (x∗, N∗) is the

solution to the system of two equations formed by (4) and (5). It is easy to see that when

access prices are symmetric, pU1 = pU2 and pD1 = pD2 , the system has one solution only and that

in that solution x∗ = 1
2

(symmetry in the first stage implies symmetry in the second stage).

To guarantee that N∗ ≥ 1, the following must happen
(a− bc)2

2b
≥

8(f + min
{
pD1 , p

D
2

}
)

4− t
.

We will assume that this is satisfied in equilibrium (see below). When access prices are not

symmetric, the system can be shown to have at most two solutions. When there are two

solutions, however, only one solution has 0 ≤ x ≤ 1 and N ≥ 1.13 Therefore, in searching for

equilibria to the first-stage price choices, we need only consider the behavior of one solution

to (4) and (5).

We now study the first stage where both platform providers simultaneously choose

{(pUi , pDi )}2
i=1. We begin by showing that there can be no symmetric equilibrium in which

12Although free entry implies that developers end up earning zero profits regardless of the platform they
join, it is assumed that the platform charging the lowest pD attracts all developers, that is, in case of
indifference, developers prefer the platform whose access fee is lowest.

13Moreover, the solution in the correct range is obtained continuously from (x∗, N∗). Fix pU
1 = pU

2 ≡ pU

and pD
1 = pD

2 ≡ pD. Suppose that the parameter values are such that the only solution to the system of
equations has x∗ = 1

2 and N∗ ≥ 1 (which is required for equilibrium). Fix a small ε > 0. For new access
prices {(pU

i , p
D
i )}2i=1 satisfying pU − ε < pU

i < pU + ε, pU
1 6= pU

2 and pD − ε < pD
i < pD + ε, the system has

two solutions (x∗1, N
∗
1 ) and (x∗2, N

∗
2 ). The first solution is “close” to (x∗, N∗) and satisfies 0 ≤ x∗1 ≤ 1 and

N∗1 ≥ 1. The second solution is discontinuous (“far away” from (x∗, N∗)) and in the wrong range: x∗2 > 1
and/or N∗2 < 1.

12



both platform providers charge an entry fee for developers above cD. Otherwise, one of

the platform providers could slightly decrease the price charged to developers, which would

discontinuously increase the number of developers she serves, thereby increasing profits.14

Similarly, there can be no symmetric equilibrium in which both platform providers subsidize

developers (pD1 = pD2 ≡ pD∗ < cD). Otherwise, one of the providers could unilaterally raise

her entry fee, which would not affect profits made on the user side, and would stop losses on

the developer side. Therefore, if a symmetric equilibrium exists, then it must be such that

pD1 = pD2 ≡ pD∗ = cD.

Next, we derive a unique candidate to symmetric equilibrium for pU1 and pU2 . Platform 1’s

profit is Π1(pU1 , p
U
2 ) = pU1 x(pU1 , p

U
2 ) and platform 2’s profit is Π2(pU1 , p

U
2 ) = pU2 (1− x(pU1 , p

U
2 )),

so the first-order conditions are:

x(pU1 , p
U
2 ) + pU1

∂x(pU1 )

∂pU1
= 0,

1− x(pU1 , p
U
2 )− pU2

∂x(pU1 )

∂pU2
= 0.

To derive an expression for the partial derivatives, let N(x) be the unique N that solves (5)

given x:

N(x) =

√
(2− t+ 2tx− 2tx2)(a− bc)2

2b(f + pDi )
− 1.

Then, using the result that pD1 = pD2 ≡ pD∗ = cD, the marginal user condition (eq. 4) can

be expressed as:

x(pU1 , p
U
2 )− 1

2
− b(pU2 − pU1 )

t(a− bc)2(1−

√
2b(f + cD)

[2− t+ 2tx(pU1 , p
U
2 )− 2t(x(pU1 , p

U
2 ))2](a− bc)2

)2

= 0.

Applying the implicit function theorem yields:

∂x(pU1 , p
U
2 )

∂pU1
= − 1

t(a− bc)2(
N(x)

N(x) + 1
)2

b
+

2t(1− 2x)(pU2 − pU1 )

√
2b(f + cD)

(a− bc)2

(2− t+ 2tx− 2tx2)
3
2 (

N(x)

N(x) + 1
)

.

14Note as well that this would have an arbitrarily small effect on user demand for such provider’s platform,
which does not affect the thrust of the argument.
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Using this expression in the above first-order conditions, we see that the following must hold

in a symmetric equilibrium:

pU1 = pU2 ≡ pU∗ =
t(a− bc)2

2b
(1−

√
4b(f + cD)

(4− t)(a− bc)2
)2.

To guarantee that N∗ = N(1
2
) ≥ 1, we assume that

(a− bc)2

2b
≥ 8(f + cD)

4− t
. This concludes

our search for a candidate to symmetric equilibrium (pU∗, pD∗).

To prove that both platform providers setting (pU∗, pD∗) constitutes an equilibrium, it

only remains to rule out deviations involving decreases in the entry fee accompanied by

changes in the price charged to users.15 In order to show that one of the platform providers,

1 say, has no incentive to do so, note that if 1’s entry fee is the lowest, then it will attract

n1 developers, where n1 is given by the following free-entry condition:

pD1 =
(2− t+ 2tx− 2tx2)

2b

(
a− bc
n1 + 1

)2

− f . (6)

Because there is a one-to-one relationship between pD1 and n1 (given x), we can let platform

provider 1 choose pU1 and n1 (instead of pD1 ) while keeping pU2 and pD2 fixed.

We note the following useful fact: given pD1 , n1 is maximal when x = 1
2
. Therefore,

platform 1 will be able to attract n1 developers at lowest cost when x = 1
2
.16 When x 6= 1

2
,

to attract n1 developers platform 1 will need to set a lower pD1 , thus earning less from this

side of the market. When x = 1
2
, the free-entry condition (6) becomes:

pD1 =
(4− t)

4b

(
a− bc
n1 + 1

)2

− f . (7)

We show that even if the number of developers was determined by eq. (7) (this is the best

case for platform 1), it will not desire to deviate. Using (4) and (7), we have that platform

15It is clear that upward changes in the entry fee do not increase profit to be made on developers and do
not affect N∗, which means that no platform provider has an incentive to change its user price given that
its competitor’s user price is kept fixed.

16We say “cost” because the only potentially helpful deviations from pD
1 = pD

2 = pD∗ = cD involve
pD
1 < cD, a negative markup.
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provider 1 solves

max
pU
1 ,n1

Π1(pU1 , n1) = max
pU
1 ,n1

[
pU1 (

1

2
+
b(pU∗ − pU1 )

t(a− bc)2

(
n1 + 1

n1

)2

) +
(4− t) (a− bc)2 n1

4b(n1 + 1)2
− (f + cD)n1

]
.

It is simple to show that the derivative with respect to pU1 evaluated at (pU∗, N∗) is zero. In

turn, the (right) derivative with respect to n1 evaluated at (pU∗, N∗) is non-positive (since

N∗ ≥ 1). The question is then whether the decrease in profit from larger n1 is compensated

by the profit increase from an increase in pU1 . To see that the answer is negative, we solve
∂Π1(pU1 , n1)

∂pU1
= 0 for pU1 to obtain

pU1 (n1) =
1

4

(
2pU∗ +

(a− bc)2 n2
1t

b(n1 + 1)2

)
.

We then substitute pU1 (n1) in Π1(pU1 , n1) to obtain profit as a function of n1 alone, Π1(n1).

Finally, a little algebra shows that
∂Π1(n1)

∂n1

< 0 for all parameter values. Hence, both

platform providers setting prices (pU∗, pD∗) constitutes the unique symmetric equilibrium of

the game.

The properties of such an equilibrium outcome are driven by the full evaporation of profits

on the developer side because developers perceive platforms to be homogeneous. The fact

that platforms are not characterized by idiosyncratic network effects implies that providers

compete for users as in a traditional Hotelling framework. Hence, profits just accrue because

users perceive platforms to be horizontally differentiated. In particular, equilibrium profits

are equal to

Π∗ =
t(a− bc)2

4b

(
N∗

N∗ + 1

)2

≥ 0.

Note also that the marginal user achieves positive utility in equilibrium, that is,

(2− 3t)(a− bc)2

4b

(
N∗

N∗ + 1

)2

> 0

holds because t ∈ (0, 2/3).

We summarize the properties of the unique symmetric equilibrium that we have just

derived as follows.

Proposition 1 Suppose that there exist two platform providers that sell compatible plat-
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forms. The unique symmetric equilibrium yields profits for each firm equal to

Π∗ =
t(a− bc)2

4b

(
N∗

N∗ + 1

)2

.

Moreover, users are not subsidized to purchase the platform, whereas developers are charged

an entry fee equal to marginal cost: pU∗ ≥ 0 = cU and pD∗ = cD.

3.1 Social efficiency

We now derive the welfare-maximizing number of developers under the assumption that the

social planner can control the number of developers who become active in the first period,

but not their subsequent behavior. We show that price competition for developers is too

harsh and results in excessive entry.

In this second-best scenario, a welfare-maximizing social planner who targeted full market

coverage would face the following problem:

max
N

W com(N) = max
N

[2

∫ 1
2

0

(1− tj)(a− bc)2

2b

(
N

N + 1

)2

dj︸ ︷︷ ︸
Users’ surplus

+ (
(4− t)(a− bc)2

4b

(
1

N + 1

)2

− f − cD)︸ ︷︷ ︸
Platforms’ profits

N ]

(8)

= max
N

[
(4− t)(a− bc)2

8b
(1− 1

(N + 1)2
)− (f + cD)N ].

It is straightforward to show that the efficient number of developers is given by the solution

to the first-order condition:

N e =

(
(4− t)(a− bc)2

4b(f + cD)

) 1
3

− 1. (9)

Hence, the fact that N∗ =

(
(4− t)(a− bc)2

4b(f + cD)

) 1
2

− 1 and the assumption that
(a− bc)2

2b
≥

8(f + cD)

4− t
(made earlier to ensure that N∗ ≥ 1) yield that N e < N∗. Using equation (9),

it is straightforward that the entry fee pDe that implements the socially efficient outcome

exceeds marginal cost cD. The result that we have just proved is stated in the following

proposition.
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Proposition 2 Suppose there exist two competing platform providers that sell compatible

platforms. Then entry by developers is excessive from a social planner’s viewpoint: N∗ > N e.

Moreover, the socially efficient entry fee does not subsidize developers: pDe > cD.

Bertrand competition for developers implies that the social marginal cost of promoting

developer entry coincides with the entry costs faced by an extra developer. Therefore,

both the additional developer and a social planner would consider the exact same costs

of entry, f + cD. However, the additional developer and the social planner differ in their

assessment of the benefits of entry. The second-period profits that an extra developer earns

if it enters are always greater than the additional second-period social surplus generated by

this extra developer. Hence, entry is excessive from a social welfare standpoint, since the

social incentives to promote developer entry are weaker than the private incentives to enter.

4 Incompatible platforms

When platforms are incompatible, the ni application developers who have traded with plat-

form provider i develop applications that work exclusively with that platform.

We begin by solving for the second period outcomes, given {(pUi , pDi ;xi, ni)}2
i=1. Amongst

users who bought platform i ∈ {1, 2}, let xi denote the distance from i for the individual

located farthest away. Monotonicity implies that those individuals whose distance from i

is less than xi must have traded with i as well, so the measure of users served by platform

provider i is xi. If the ni developers who have traded with platform i charge price ρi, then

the demand for applications by user j located at distance sji ∈ [0, xi] from platform i is

given by qj(ρi, sji) = (1 − tsji)(a − bρi). It follows that aggregate demand for applications

functional on i equals Qi(ρi, xi) =
∫ xi

0
qj(ρi, sji)dj = xi(1−

txi
2

)(a− bρi), and hence inverse

demand is

ρi(Qi, xi) =
a

b
− 2Qi

bxi(2− txi)
.

Having obtained aggregate demand, it is standard to show that ρinci =
a+ nibc

b(ni + 1)
is the

second-period equilibrium price of platform i’s applications under Cournot competition, and

hence each earns the following post-entry profits:

πinci =
xi(2− txi)

2b

(
a− bc
ni + 1

)2

. (10)
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User j who is located at distance sji from platform i ∈ [0, xi] and who has acquired such

platform, attains the following second-period surplus:

uincj (sji) =

∫ a/b

ρinc
i

(1− tsji)(a− bρi)dρi =
(1− tsji)(a− bρinci )2

2b
=

(1− tsji)n2
i

2b

(
a− bc
ni + 1

)2

.

(11)

Observe that, ceteris paribus, users would benefit from competition between developers,

whereas a larger market size in the second period would make developers better off. Hence,

both sides exhibit positive inter-group network effects that must be acknowledged by plat-

forms when setting access prices in the first period. In addition, the developer side exhibits

negative intra-group network effects, since, for a fixed measure of users, increasing the num-

ber of developers would destroy second-period profits. This concludes the analysis of the

second period subgame.

We now solve the first-period. We are interested in analyzing symmetric equilibria in

which platforms set the same access prices (pU1 = pU2 = pU∗∗ and pD1 = pD2 = pD∗∗). Consider

first the second stage. Given {(pUi , pDi )}2
i=1, users and developers choose which platform to

join. We first study the choice by users. Because x1 = 1 − x2 (i.e., the market is fully

covered), we drop subscripts so that x denotes the measure of users served by platform

provider 1 and 1 − x denotes the measure of users served by platform provider 2. The

location of the marginal user ĵ given that her distance from platform 1 is x must be given

by uincbj (x)− pU1 = uincbj (1− x)− pU2 , or

(1− tx)n2
1

2b

(
a− bc
n1 + 1

)2

− pU1 =
(1− t(1− x))n2

2

2b

(
a− bc
n2 + 1

)2

− pU2 . (12)

Regarding the other side of the market, the following free-entry condition must hold for

those developers trading with platform provider i ∈ {1, 2}:

pDi =
xi(2− txi)

2b

(
a− bc
ni + 1

)2

− f , (13)

where xi = x if i = 1 and xi = 1− x otherwise.

Given {(pUi , pDi )}2
i=1, the outcome to the second-stage subgame (x, n1, and n2) is the

solution to the system of three equations and three unknowns formed by (12) and (13,

i = 1, 2). Numerical analysis shows that there may be more than one solution to that
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system.17 Different solutions correspond to different ways in which users and developers

coordinate their adoption decisions of which platform to join. For example, when access

prices are symmetric pU1 = pU2 and pD1 = pD2 , depending on the parameter values, there

is either a unique solution (x∗∗, N∗∗) (this solution satisfies x∗∗ = 1
2
) or there are three

solutions (x∗∗1 , N
∗∗
1 ), (x∗∗2 , N

∗∗
2 ), and (x∗∗3 , N

∗∗
3 ). One of the three solutions, say (x∗∗2 , N

∗∗
2 ),

has x∗∗2 = 1
2
. Another solution, say (x∗∗1 , N

∗∗
1 ), has x∗∗1 < 1

2
. The other solution has x∗∗3 > 1

2
.

We deal with the issue of multiple solutions to the system by requiring symmetric equilib-

ria to meet a monotonicity criterion. Following Caillaud and Jullien (2003), we will require

that unilateral deviations by one platform that involve (weakly) increasing the access prices

should not lead to increases in user and developer demand for the platform.18 Only the

solution with x∗∗2 = 1
2

satisfies this criterion. Thus, in searching for equilibria when access

prices are symmetric, we will consider the solution with x∗∗2 = 1
2

only. When access prices

are asymmetric, the system has three solutions or no solutions at all. When there are three

solutions, only one solution satisfies Caillaud and Jullien’s (2003) monotonicity criterion.19

We now derive the equilibrium access prices. Because the free-entry condition (13) implies

that (
(a− bc)ni
ni + 1

)2

=

(
a− bc−

√
2b(pDi + f)

xi(2− txi)

)2

,

expression (12) can be rewritten as:

(1− tx)

(
a− bc−

√
2b(pD

1 +f)

x(2−tx)

)2

2b
+

(t− 1− tx)

(
a− bc−

√
2b(pD

2 +f)

(1−x)(2−t(1−x))

)2

2b
+ pU2 − pU1 = 0.

(14)

This equation implicitly defines an expression for x as a function of pU1 and pD1 (that is, we

have that x(pU1 , p
D
1 ), although we will sometimes suppress the dependence to save space).

17The Mathematica code is available from the authors.
18The monotonicity criterion is (trivially) satisfied in the unique symmetric equilibrium under compatibility

derived in Section 3.
19Moreover, the only solution that satisfies Caillaud and Jullien’s criterion is obtained continuously from

(x∗∗2 , N
∗∗
2 ). Fix pU

1 = pU
2 ≡ pU and pD

1 = pD
2 ≡ pD. Consider the solution (x∗∗2 , N

∗∗
2 ) with x∗∗2 = 1

2 . Fix a
small ε > 0. For new access prices {(pU

i , p
D
i )}2i=1 satisfying pU−ε < pU

i < pU +ε and pD−ε < pD
i < pD+ε, the

system has three solutions (x̂∗∗1 , N̂
∗∗
1 ), (x̂∗∗2 , N̂

∗∗
2 ), and (x̂∗∗3 , N̂

∗∗
3 ). The first solution is “close” to (x∗∗1 , N

∗∗
1 ),

the second to (x∗∗2 , N
∗∗
2 ), and the third to (x∗∗3 , N

∗∗
3 ). Only (x̂∗∗2 , N̂

∗∗
2 ) satisfies the monotonicity criterion.
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Using (13) and (14), platform provider 1’s problem can be written as follows:

max
pU
1 ,p

D
1

Π1(pU1 , p
D
1 ) = max

pU
1 ,p

D
1

[pU1 x(pU1 , p
D
1 ) + (pD1 − cD)n1(pU1 , p

D
1 )]

= max
pU
1 ,p

D
1

[pU1 x(pU1 , p
D
1 ) + (pD1 − cD)(

(a− bc)
√
x(pU1 , p

D
1 )(2− tx(pU1 , p

D
1 ))√

2b(pD1 + f)
− 1)].

Developer surplus is fully extracted via pD1 (since all developers are symmetric) and user

surplus is extracted via pU1 , although all users enjoy a strictly positive utility because of full

market coverage. Note that user surplus can be captured either directly or via the developers.

The first-order conditions are:

x(pU1 , p
D
1 ) + (pU1 +

(pD1 − cD)(a− bc)(1− tx(pU1 , p
D
1 ))√

2b(pD1 + f)x(pU1 , p
D
1 )(2− tx(pU1 , p

D
1 ))

)
∂x(pU1 , p

D
1 )

∂pU1
= 0 (15)

and

pU1
∂x(pU1 , p

D
1 )

∂pD1
+

(a− bc)
√
x(pU1 , p

D
1 )(2− tx(pU1 , p

D
1 ))√

2b(pD1 + f)
− 1 + (pD1 − cD)×

(16)

(
(a− bc)(1− tx(pU1 , p

D
1 ))√

2b(pD1 + f)x(pU1 , p
D
1 )(2− tx(pU1 , p

D
1 ))

∂x(pU1 , p
D
1 )

∂pD1
− (a− bc)

√
x(pU1 , p

D
1 )(2− tx(pU1 , p

D
1 ))

2
√

2b(pD1 + f)3
) = 0

Note from expression (15) that there is an additional term relative to traditional settings

without network effects owing to the inter-group network effect exerted by users on devel-

opers. The second term within the parenthesis reflects the fact that changing the user price

affects the number of users who choose to acquire the platform, which in turn affects the

developers’ demand for the platform and hence the gain/loss made on the developer side. A

similar observation can be made regarding (16), taking into account that changing the entry

fee affects the number of developers not only by varying the (sunk) cost of entry but also by

changing the size of the second-period market.

Given the algebraic complexity of solving for the symmetric equilibrium under incompat-

ibility, we relegate that derivation to the Appendix (see proof of Proposition 3). Similarly

to the case of compatible platforms, we use the implicit function theorem to derive expres-

sions for ∂x(pU1 , p
D
1 )/∂pU1 and ∂x(pU1 , p

D
1 )/∂pD1 . We use those expressions in conjunction to

equations (15) and (16) and the assumption of symmetry to solve for the equilibrim access

prices pU∗∗ and pD∗∗.
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To simplify notation, let

Z ≡ 4(f + cD)(t2 − 6t+ 12)3

(4− t)2t3(4 + 2t− t2)
and Z ′ ≡ 4(f + cD)(32 + 8t2 − 24t− t3)3

t3(8− t2)(4− t)5
,

and note that Z ′ < Z for 0 < t < 2/3 (see Fig. 2). The following proposition establishes that
(a− bc)2

2b
≥ Z ′ is a necessary and sufficient condition for a symmetric equilibrium satisfying

Caillaud and Jullien’s (2003) monotonicity criterion to exist under incompatibility. We also

show that the unique symmetric equilibrium exhibits the property that developers are never

subsidized, whereas users may or may not be subsidized depending on the extent of platform

differentiation.

Proposition 3 Suppose there exist two competing platform providers that sell incompatible

platforms. A symmetric equilibrium satisfying the monotonicity criterion exists if and only

if
(a− bc)2

2b
≥ Z ′. In the unique symmetric equilibrium developers are never subsidized, and

users are subsidized if and only if
(a− bc)2

2b
< Z. In particular, it holds that pU∗∗ < 0 = cU

and pD∗∗ > cD for
(a− bc)2

2b
< Z, whereas pU∗∗ ≥ 0 = cU and pD∗∗ > cD for

(a− bc)2

2b
≥ Z.

Proof. See Appendix.

Because our model has infinitely many potential developers, incompatible platforms do

not compete to attract them via access prices but rather via the size of the user network.

When horizontal differentiation is weak, platform providers compete fiercely for users by

subsidizing their access to the platform with the aim of boosting developer entry and thus

profits made on the developer side (as stems from (15) taking into account that pD > cD

and ∂x(pU1 , p
D
1 )/∂pU1 < 0 at the symmetric equilibrium prices).

Incompatibility allows platforms to vertically differentiate through the number of appli-

cations that they offer. However, since in this section we are studying symmetric equilibria,

the number of developers is the same for both platforms. This implies that, in equilibrium,

the products end up being horizontally differentiated only. In Section 5 we consider asym-

metric equilibria and show that endogenous vertical differences arise on the grounds of the

quantity of applications offered on each platform.

We have studied symmetric equilibria under the assumption that whenever pU1 = pU2 and

pD1 = pD2 the equilibrium to the second-stage subgame has x = 1
2

and n1 = n2. However,

as mentioned above, there may be other solutions to the system (12) and (13, i = 1, 2) at
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the equilibrium access prices. Remark 1 says that whenever the parameter values are such

that the solution x = 1
2

satisfies Caillaud and Jullien’s (2003) monotonicity criterion, there

are three equilibria of the second-stage subgame: (i) the symmetric solution (x = 1
2

and

n1 = n2), (ii) an asymmetric solution with market dominance by platform 2 (x′ < 1
2

and

n′1 < n′2); and (iii) an asymmetric solution with market dominance by platform 1 (x′′ = 1−x′

and n′′1 = n′2 > n′′2 = n′1). (See Figure 2 below.)
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Figure 2: Solutions to second-stage subgame.

Remark 1 Suppose there exist two competing platform providers that sell incompatible plat-

forms at the equilibrium prices derived in Proposition 3. Then, the platform adoption sub-

game (the second stage of the first period, see Figure 1) has three equilibria: (x = 1
2
, n1 = n2);

(x′ < 1
2
, n′1 < n′2); and (x′′ = 1− x′, n′′1 = n′2 > n′′2 = n′1) if and only if

(a− bc)2

2b
≥ Z ′. Oth-

erwise, there is one equilibrium only: (x = 1
2
, n1 = n2).

Proof. See Appendix.

We end by pointing out that numerical simulations show that the two solutions with

x 6= 1
2

do not satisfy the monotonicity refinement and thus we ignore them.20 Figure 2

illustrates the result.
20The Mathematica code is available from the authors.
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4.1 Social efficiency

A social planner which targeted all users and chose to let both platform providers operate

would solve:21

max
n

W inc(n) = max
n

2 [

∫ 1
2

0

(1− tj)n2

2b

(
a− bc
n+ 1

)2

dj︸ ︷︷ ︸
Users’ surplus

+ (
4− t

8b

(
a− bc
n+ 1

)2

− f − cD)︸ ︷︷ ︸
Platforms’ profits

n]

= max
n

[
(4− t)(a− bc)2

8b
(1− 1

(n+ 1)2
)− 2(f + cD)n].

Therefore,

ne =

(
(4− t)(a− bc)2

8b(f + cD)

) 1
3

− 1 and pDe =

(
(4− t)(a− bc)2(f + cD)2

8b

) 1
3

− f .

The following proposition shows that (symmetric) competition between incompatible

platforms leads to insufficient entry from a social efficiency point of view. Providers of in-

compatible platforms do not internalize all the positive effects of the network effect exerted

on users by developers because they cannot appropriate all the gains from trade that ac-

crue to users. As a result, platform providers promote less than socially desirable entry

by developers, which results in social welfare losses because of insufficient consumption of

applications.

Proposition 4 Suppose there exist two competing platform providers that sell incompatible

platforms. Then the symmetric outcome of duopolistic competition is such that entry by

developers is insufficient from a social planner’s viewpoint: n∗∗ < ne. Moreover, the socially

efficient entry fee does not subsidize developers: pDe > cD.

Proof. See Appendix.

4.1.1 Welfare comparison: compatible vs. incompatible platforms

We end this section by comparing social welfare. When a social planner can control the

number of developers who become active in the first period but not their subsequent behavior

21We should point out that a social planner may prefer having just one platform provider serving both
sides of the market so as to avoid underexploitation of network effects and duplication of costs.
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in the second period, welfare under compatibility and incompatibility are, respectively:

max
N

W com (N) = max
N

[
(4− t)(a− bc)2

8b
(1− 1

(N + 1)2
)− (f + cD)N ]

and

max
n

W inc (n) = max
n

[
(4− t)(a− bc)2

8b
(1− 1

(n+ 1)2
)− 2(f + cD)n].

Direct inspection and a revealed preference argument imply that compatibility leads to

higher total welfare. The reason is that in order for both intellectual property regimes to

produce a given level of user and developer surplus (exclusive of entry costs), incompatibility

requires duplication of costs (f+cD vs. 2(f+cD)) and thus compatibility is preferred. This is

due to the underexploitation of network effects that occurs when platforms are incompatible

(as applications are platform-specific in this case).

5 Platform compatibility versus incompatibility

Many industries with two-sided platforms are characterized by platform incompatibility and

strong market dominance by one single firm. The purpose of this section is to investigate why

this may be so partly in light of our previous results. A natural starting point is to compare

the properties of symmetric equilibria depending on whether platforms are compatible or

not. More specifically, we examine which industry structure leads to highest equilibrium

profits. To get a sense, we consider the case in which the only fixed cost incurred by a

developer is the entry fee paid to access a platform (i.e., f = cD = 0). In this scenario, it

is easy to prove that pD∗∗ =
t2(4− t)(a− bc)2

128b
. Using this result, it is a matter of simple

algebra to show that

pU∗ =
t(a− bc)2

2b
> pU∗∗ =

t(4 + 2t− t2)(a− bc)2

32b
> 0

and

Π∗ =
t(a− bc)2

4b
> Π∗∗ =

t(24− t2 − 4t)(a− bc)2

128b
> 0.

This suggests that the (symmetric equilibrium) prices charged to users and profits are

greater under platform compatibility than under incompatibility.22 This raises the question

22We have also performed many numerical simulations with f + cD > 0, and we have found no counterex-
ample to this claim. See Figure 3. The Mathematica code is available from the authors.
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of why platform providers do not somehow negotiate to make their platforms compatible,

which is also the socially efficient outcome because it avoids cost duplication (see Subsection

4.1.1). One plausible answer is that there might exist other equilibria when platforms are

incompatible in which (at least) one of the platform providers earns more profits than in any

equilibrium that arises when platforms are compatible.

We now proceed to investigate whether there are asymmetric equilibria under incompat-

ibility that may be preferred by (at least) one platform provider over all equilibria in the

compatible case. We first consider the case of homogenous users (t = 0) and then extend the

analysis to the less tractable case of heterogeneous users (0 < t < 2/3). We will find that

the only equilibrium under compatibility is the symmetric equilibrium derived in Section 3,

and that asymmetric equilibria with one platform cornering the market exist in the case of

incompatible platforms. Moreover, market dominance by an incompatible platform leads to

higher profits than compatibility when horizontal differences between platforms t are low.

Note that the importance of studying asymmetric equilibria is reinforced by the fact that

in the incompatible case, symmetric equilibria do not exist when t is low. In particular,

the requirement that
(a− bc)2

2b
≥ Z ′ for a symmetric equilibrium to exist (see Proposition

3) becomes unrealistically severe as t ↓ 0, since the right hand side of the inequality grows

without bound as t decreases (for positive f + cD). This suggests that asymmetric equilibria

with a dominant platform may be the proper benchmark when making comparisons between

incompatibility and compatibility when t is low.

5.1 Homogeneous users (t = 0)

5.1.1 Asymmetric equilibria when platforms are compatible

We begin with a general development that will also be helpful for the case t > 0 (covered in

Section 5.2) and later specialize it to t = 0.

An asymmetric equilibrium under compatibility must involve platform providers charging

different prices to developers. This implies that one of the platforms must be making a loss

on the developer side (otherwise, the rival would undercut it). Suppose, without loss of

generality, that platform 1 is charging pD1 < cD and pD1 < pD2 . In this case, platform 2’s

profits are

Π2(pU2 ) = pU2 (1− x(pU1 , p
U
2 )),
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where, using (4) and (5), x(pU1 , p
U
2 ) is implicitly given by:

x(pU1 , p
U
2 )− 1

2
− b(pU2 − pU1 )

t(a− bc)2(1−

√
2b(f + pD1 )

[2− t+ 2tx(pU1 , p
U
2 )− 2t(x(pU1 , p

U
2 ))2](a− bc)2

)2

= 0.

In turn, platform 1’s profits are

Π1(pU1 , p
D
1 ) = pU1 x(pU1 , p

U
2 )+(pD1 − cD)(

√
[2− t+ 2tx(pU1 , p

U
2 )− 2t(x(pU1 , p

U
2 ))2](a− bc)2

2b(f + pD1 )
−1).

For simplicity, we will drop the arguments of x(pU1 , p
U
2 ), so that the free-entry condition

can be written as

N =

√
(2− t+ 2tx− 2tx2)(a− bc)2

2b(f + pD1 )
− 1, (17)

and the marginal user condition can be written as

x =
1

2
+
b(pU2 − pU1 )

t(a− bc)2

(
N + 1

N

)2

, (18)

with

∂x(pU1 , p
U
2 )

∂pU1
= − 1

t(a− bc)2N2

b(N + 1)2
+

2t(a− bc)2(1− 2x)(pU2 − pU1 )

2b(f + pD1 )(N + 1)2N

,

∂x(pU1 , p
U
2 )

∂pD1
=

b(pU2 − pU1 )(N + 1)2

t(a− bc)2(f + pD1 )N3 + t(a− bc)2(1− 2x)(pU2 − pU1 )
.

After some manipulations and noting that ∂x(pU1 , p
U
2 )/∂pU2 = −∂x(pU1 , p

U
2 )/∂pU1 , the first-

order conditions for pU2 , pU1 , and pD1 can be written, respectively, as:

0 = (1− x)(
t(a− bc)2N2

b(N + 1)2
+

2t(a− bc)2(1− 2x)(pU2 − pU1 )

2b(f + pD1 )(N + 1)2N
)− pU2 , (19)

0 = x(
t(a− bc)2N2

b(N + 1)2
+

2t(a− bc)2(1− 2x)(pU2 − pU1 )

2b(f + pD1 )(N + 1)2N
)− (pU1 +

t(a− bc)2(1− 2x)(pD1 − cD)

2b(N + 1)(f + pD1 )
),

(20)
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0 = (pU1 +
t(a− bc)2(1− 2x)(pD1 − cD)

2b(N + 1)(f + pD1 )
)b(pU2 − pU1 )(N + 1)2 + (21)

[t(a− bc)2(f + pD1 )N3 + t(a− bc)2(1− 2x)(pU2 − pU1 )](N − (pD1 − cD)(N + 1)

2(f + pD1 )
).

Thus, a necessary condition for an asymmetric equilibrium (pU1 , pD1 , pU2 , pD2 , x, and N)

with pD1 < cD and pD1 < pD2 to exist is that the system of five equations formed by (17)-(21)

be satisfied.

To see that there is no asymmetric equilibrium, note that when t = 0, equations (19) and

(20) become 0 = pU2 and 0 = pU1 . Therefore, platform provider 1 would prefer to raise pD1

(since the right hand side of (21) would be always positive). We conclude that when t = 0

the unique equilibrium of the game is the symmetric equilibrium derived in Section 3.

5.1.2 Asymmetric equilibria when platforms are incompatible

When t = 0, compatibility yields zero profits for both providers. We now show that there

exists an equilibrium under incompatibility in which one platform provider dominates the

market and makes positive profits. The importance of asymmetric equilibria has already

been highlighted by Katz and Shapiro’s (1985) classical work on one-sided platforms, and

more recently, by Caillaud and Jullien (2003) in a setting in which both sides of the plat-

form bargain efficiently, unlike ours in which second-period trade efficiency depends on the

platform providers’ first-period pricing structures.

Let {pUi , pDi }2
i=1 denote a candidate equilibrium strategy profile such that platform provider

1 corners the market. In this case, not only should users derive positive utility by purchasing

platform 1, but they should also prefer trading with 1 rather than 2. Hence, we must have

that
n2

1

2b

(
a− bc
n1 + 1

)2

− pU1 ≥ −pU2 ,

where n1 is given by the free-entry condition: pD1 =
1

b

(
a− bc
n1 + 1

)2

− f .

We focus throughout on the most optimistic expectations for the dominant platform (i.e.,

platform 1). Thus, upon observing any pair of access prices charged by a platform, it holds

that a user expects all others to join platform 1 unless pU2 ≤ p̃U2 = pU1 −
n1

2b

(
a− bc
n1 + 1

)2

, in

which case they all coordinate on platform 2 (since getting access to 1 is dominated). We

study the most profitable deviation that platform provider 2 could undertake. In order to

avoid infinite losses that would ensue from trying to attract developers, it can only deviate
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by setting a price for users such that it attracts them all. This can be done by charging

a price (slightly below) p̃U2 = pU1 −
n2

1

2b

(
a− bc
n1 + 1

)2

< 0. Simultaneously, platform provider

2 could set an entry fee p̃D2 such that
1

b

(
a− bc
ñ2 + 1

)2

− f − p̃D2 = max(0,−f − pD1 ), that is,

we must have p̃D2 =
1

b

(
a− bc
ñ2 + 1

)2

− f . To solve for the optimal number of developers to be

attracted, notice that

Π2(ñ2) = p̃U2 + (
1

b

(
a− bc
ñ2 + 1

)2

− f − cD)ñ2

attains its maximum at some ñ2 ∈ (0, 1), so accounting for the integer constraint yields that

either ñ2 = 1 or ñ2 = 0. This shows that the optimal deviation for platform provider 2

would yield the following profits:

Π̃2 = pU1 −
n2

1

2b

(
a− bc
n1 + 1

)2

+ max(0,
(a− bc)2

4b
− f − cD).

Therefore, in order for (pU1 , p
D
1 ) to constitute an equilibrium strategy for platform provider

1, pU1 and n1 should be the solutions to the following programme (as long as profits are

positive in equilibrium):

maxepU
1 ,en1

Π1(p̃U1 , ñ1) = maxepU
1 ,en1

[p̃U1 + (
1

b

(
a− bc
ñ1 + 1

)2

− f − cD)ñ1]

s.t. p̃U1 ≤
ñ2

1

2b

(
a− bc
ñ1 + 1

)2

+ min(0, f + cD − (a− bc)2

4b
)

p̃U1 ≤
ñ2

1

2b

(
a− bc
ñ1 + 1

)2

.

The first constraint says that platform provider 1 sets a price for users such that 2 cannot

make positive profit, whereas the second one means that application users find it optimal to

trade with platform provider 1 at such prices, given that ñ1 developers are attracted. The

first constraint is more stringent than the second one if and only if
(a− bc)2

4b
≥ f + cD. If

this holds,
(a− bc)2

4b
− (f + cD) represents the benefit that accrues to users owing to the

existence of an (inactive) platform provider. This is at the expense of the dominant platform

provider, which loses some market power owing to the existence of potential competition.
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Because the most interesting cases from a strategic standpoint are those in which the

dominant platform provider would be constrained by the existence of its competitor, we

assume that
(a− bc)2

4b
≥ f + cD and we can ignore the second constraint. Clearly, the first

constraint must be satisfied with equality in equilibrium, so platform provider 1 solves:

maxen1

Π1(ñ1) = maxen1

[
(a− bc)2

2b
(1− 1

(ñ1 + 1)2
)− (f + cD)ñ1 + f + cD − (a− bc)2

4b
].

Hence, the optimal number of developers pursued by platform provider 1 is ñ∗1 =

(
(a− bc)2

b(f + cD)

) 1
3

−

1, and Π1(ñ∗1) ≥ Π1(1) > 0.

It can also be shown that users may be subsidized by the dominant platform provider.

Some algebra yields that

p̃∗1 =
(a− bc)2

4b
−

2(a− bc)
(
(a− bc)b(f + cD)

) 1
3

2b
+

(
(a− bc)b(f + cD)

) 2
3

2b
+ (f + cD).

Taking into account that
(a− bc)2

b(f + cD)
≥ 4, it can be shown that buyers are subsidized if and

only if it holds that 8 ≤ (a− bc)2

b(f + cD)
≤ 4

3
√

3− 5
. For low values of (a − bc)2/b(f + cD), it is

pointless for the dominant platform provider to subsidize users since the low surplus that

could be extracted by the competing platform provider via developers would not compensate

the losses it would make when attracting users. This changes as the surplus grows, so the

dominant platform provider prices the competitor out by subsidizing users. However, for

large enough surplus, users are not subsidized.

5.1.3 Profit comparison

Because the unique equilibrium when platforms are compatible is the symmetric one derived

in Section 3 and profits in that equilibrium vanish as t ↓ 0, we have proved the following:

Proposition 5 Suppose there exist two competing platform providers that sell incompatible

platforms. If t = 0, there exist (two) asymmetric equilibria in which one of the platform

providers captures all users and achieves a positive profit that exceeds that achieved when

platforms are compatible. Moreover, users are subsidized by the dominant platform provider

if and only if 8 ≤ (a− bc)2

b(f + cD)
≤ 4

3
√

3− 5
.
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The striking result that platform compatibility yields greater profits than incompatibility

in a symmetric equilibrium is highly dependent on the type of equilibrium played. Indeed,

asymmetric equilibria when platforms are incompatible may yield greater profits for the

dominant platform provider, as we just showed.

5.1.4 Social efficiency

We now compare social efficiency between competing platforms when they are compatible

and when they are incompatible and play the asymmetric equilibrium derived in Section

5.1.2. We begin with a simple remark.

Remark 2 Assume that t = 0 and suppose there exist two competing platform providers.

(a) If platforms are compatible, then total welfare in the unique equilibrium is

W com (N∗) =
(a− bc)2

2b

(
1− 1

(N∗ + 1)2

)
− (f + cD)N∗.

(b) If platforms are incompatible, then total welfare in the cornering equilibrium derived in

Section 5.1.2 is

W̃ inc (ñ∗1) =
(a− bc)2

2b

(
1− 1

(ñ∗1 + 1)2

)
− (f + cD)ñ∗1.

N∗ and ñ∗1 are the equilibrium number of developers in each case.

Proof. See Appendix.

Now, because ñ∗1 =

(
(a− bc)2

b(f + cD)

) 1
3

− 1 (see Section 5.1.2) and N∗ =

(
(a− bc)2

b(f + cD)

) 1
2

− 1

(see Section 3), simple algebra shows that W̃ inc (ñ∗1) > W com (N∗). Therefore, when t = 0

the asymmetric equilibrium under incompatibility generates larger welfare than the unique

equilibrium under compatibility.

The advantage of compatibility versus asymmetric incompatibility is that it addresses

better the idiosyncratic tastes of users (horizontal dimension) because both platforms are

active and each serves half of the market. In the asymmetric equilibrium, only one platform

is active and those users located far away derive limited utility from applications on that

platform. We will show that the advantage of compatibility lessens as t declines. The
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disadvantage of compatibility is that it induces too much entry by developers. The excessive

entry is independent of horizontal differentiation because pD∗ = cD regardless of the value

of t. Therefore, when t = 0, asymmetric incompatibility has no disadvantage compared to

compatibility and thus the social welfare that it generates is larger.

5.2 Heterogeneous users (t > 0)

5.2.1 Asymmetric equilibria when platforms are compatible

As argued in Section 5.1.1, when studying asymmetric equilibria with compatibility, we may

(without loss of generality) consider the case where platform 1 charges pD1 < cD and pD1 < pD2 .

Moreover, a necessary condition for an asymmetric equilibrium to exist is that the system

of five equations formed by (17)-(21) and five unknowns (pU1 , pD1 , pU2 , x, and N) be satisfied.

Given the difficulty of solving that system algebraically, we have performed a large volume

of numeric simulations.23 The simulations all suggest that there is no asymmetric equilibrium

in the case of compatible platforms (if one requires that N be larger than or equal to 1

when solving the system of equations). Intuitively, because compatibility prevents platforms

from differentiating based on the number of applications that run on them, given N and

the assumption that of symmetric horizontal differentiation between platforms, the prices

charged to users have a strong propensity to equalization. But when pU1 = pU2 , platform

1 prefers to increase pD1 to stop hemorrhaging losses on the developer side that are not

compensated by additional gains on the user side.

5.2.2 Asymmetric equilibria when platforms are incompatible

We now generalize the development in Section 5.1.2 to the case t > 0.

Suppose that {(pUi , pDi )}2
i=1 is such that platform 1 completely dominates the market.

What is the most profitable deviation that platform 2 could undertake? To capture x2

users, it should charge a price pU2 such that
(1− t(1− x2))n2

1

2b

(
a− bc
n1 + 1

)2

− pU1 < −pU2 , that

is, p̃U2 = pU1 −
(1− t(1− x2))n2

1

2b

(
a− bc
n1 + 1

)2

. Using the free-entry condition for developers

yields that platform 2’s most profitable deviation is given by the solution to the following

23The Mathematica code is available from the authors.
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programme:

max
x2,n2

x2(pU1 −
(1− t(1− x2))(a− bc)2

2b

(
n1

n1 + 1

)2

)+n2(
x2(2− tx2)(a− bc)2

2b

(
1

n2 + 1

)2

−(f+cD)).

The first-order conditions are

(1− tx2)(a− bc)2n2

b

(
1

n2 + 1

)2

+ pU1 −
(1− t+ 2tx2)(a− bc)2

2b

(
n1

n1 + 1

)2

= 0

x2(2− tx2)(a− bc)2(1− n2)

2b(n2 + 1)3
− (f + cD)n2 = 0.

The second first-order condition, together with the integer constraint, implies that plat-

form 2 finds it optimal to promote either no entry or entry by just one developer. If

it finds it optimal to promote entry by one developer, then it chooses to serve x2 =

1− 2(1− t)
(

n1

n1 + 1

)2

+
4bpU1

(a− bc)2

t(1 + 4

(
n1

n1 + 1

)2

)

users. Note that x2 > 0 if and only if

pU1 >

(a− bc)2(2(1− t)
(

n1

n1 + 1

)2

− 1)

4b
=

(a− bc)2(2(1− t)
(

1−
√

2b(pD
1 +f)

(2−t)(a−bc)2

)2

− 1)

4b
.

If x2 > 0, then profit is

x2(pU1 −
(1− t(1− x2))(a− bc)2

2b

(
n1

n1 + 1

)2

) +
x2(2− tx2)(a− bc)2

8b
− (f + cD)

Therefore, the equilibrium pU1 and pD1 solve the following constrained optimization pro-

gram:

max
pU
1 ,p

D
1

pU1 + (pD1 − cD)(

√
(2− t)(a− bc)2

2b(pD1 + f)
− 1)

s.t. x2(pU1 −
(1− t(1− x2))(a− bc)2

2b
(1−

√
2b(pD1 + f)

(2− t)(a− bc)2
)2) +

x2(2− tx2)(a− bc)2

8b
− (f + cD) ≤ 0

pU1 ≤
(1− t)(a− bc)2

2b

(
n1

n1 + 1

)2

,
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where x2 =
1− 2(1− t)(1−

√
2b(pD

1 +f)

(2−t)(a−bc)2 )2 +
4bpU

1

(a−bc)2

t(1 + 4(1−
√

2b(pD
1 +f)

(2−t)(a−bc)2 )2)
and n1 =

√
(2− t)(a− bc)2

2b(pD1 + f)
− 1.

The first constraint prevents platform 2 from deviating from a situation where it obtains

no demand. The second constraint guarantees that all users purchase platform 1.

5.2.3 Profit comparison

While the constrained optimization problem that we have just set up is hard to solve in

general, numerical analysis is manageable.24 The simulations (Figure 3) show that when t is

low, the dominant platform earns larger profits than symmetric platforms under compatibil-

ity. When t is low, the equilibrium under compatibility displays very intense competition for

users (in addition to the Bertrand-type competition for developers discussed in Section 3),

as the platforms are symmetric and scarcely differentiated. In the asymmetric incompatible

case, the winning platform needs to lower prices to attract buyers that are “far away” but,

since t is low, the lack of platform appeal for which they need to be compensated is also low.

The optimistic expectations towards the winning platform allow it to vertically differentiate

its offering based on the number of applications that it offers. The vertical differentiation,

in turn, allows for relatively large access prices and high profit.

As t grows and horizontal differentiation intensifies, it becomes harder for the dominant

platform to attract all users. This forces the dominant platform to lower pU and profits

decline. In fact, Figure 3 shows that when t is large, dominant platform equilibria may

generate lower profits than the symmetric equilibrium under incompatibility.

We also note that if side payments were feasible, one necessary condition for platforms to

agree on compatibility through bargaining would be that industry profits under compatibility

exceeded the profits of the dominant platform under incompatibility. Figure 3 shows that

when t is low, dominant platform profits are more than twice the profits under compatibility.

Therefore, when t is low it is impossible for platforms to agree on compatibility.

Figure 3 is also useful in extending the conclusions of our model to those situations in

which compatibility softens the horizontal differentiation of competing platforms because

of standardization. Thus, if platforms are allowed to switch from compatibility to incom-

patibility (or vice versa), there are typically two distinct effects on the nature of platform

competition. First, the size of the relevant network changes and, thus, the equilibrium prices

24The Mathematica code is available from the authors. The figure shows profits under compatibility,
symmetric incompatibility, and asymmetric incompatibility at different values of t ∈ [0, 2/3).
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Figure 3: Profit comparison. Parameters: (a−bc)2
2b

= 50, cD = 0.1, and f = 0.

also change (this has been the issue that we have investigated in this paper). Second, t may

also change in value in the case of platform standardization. In particular, t is likely to be

lower when platforms are compatible. By fixing the value of t in our analysis, we have been

able to isolate the first effect to better understand it.

While future research may carefully address the issue of changing t, based on Figure 3 we

can safely conclude that small changes in t have no qualitative effects on our results. To see

this, note that a decrease in t for the compatible case is equivalent to a rotation downwards

of the compatible profit line from the origin. If there were large changes in t, however, then

profits under symmetric incompatibility may be larger than under compatibility, reversing

one of our main results.

5.2.4 Social efficiency

We now compare social efficiency between competing platforms when they are compatible,

when they are incompatible and play the unique symmetric equilibrium derived in Section

4, and when they are incompatible and play the asymmetric equilibrium derived in Section

5.2.2. The following is a generalization of Remark 2 to the cases with t > 0.

Remark 3 Let A =
(a− bc)2

2b
. Suppose there exist two competing platform providers.

(a) If platforms are compatible, then total welfare in the unique equilibrium is

W com (N∗) = (1− t

4
)A

(
1− 1

(N∗ + 1)2

)
− (f + cD)N∗.
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(b) If platforms are incompatible, then total welfare in the unique symmetric equilibrium is

W inc (n∗∗) = (1− t

4
)A

(
1− 1

(n∗∗ + 1)2

)
− 2(f + cD)n∗∗.

(c) If platforms are incompatible, then total welfare in the cornering equilibrium derived in

Section 5.2.2 is

W̃ inc (ñ∗1) = (1− t

2
)A

(
1− 1

(ñ∗1 + 1)2

)
− (f + cD)ñ∗1.

N∗, n∗∗, and ñ∗1 are the equilibrium number of developers in each case.

Proof. See Appendix.

Because both n∗∗ and ñ∗1 depend on pD∗∗ and p̃D1 for which we do not have explicit

solutions, we proceed to compare W com (N∗), W inc (n∗∗), and W̃ inc (ñ∗1) through numerical

simulations.25 The examples reveal that the comparison is ambiguous (see Figures 4 and 5

below). When t is low, there is no symmetric incompatible equilibrium. In this case, the

asymmetric incompatible equilibrium appears to generate larger surplus than compatibility.

The intuition is exactly as presented in Section 5.1.4.

We also see that symmetric incompatibility may produce larger social surplus than com-

patibility. While compatibility saves on costs to build a given network of developers, it leads

to excessive entry.

Finally, the simulations show that welfare is a decreasing function of t, regardless of

the intellectual property regime and equilibrium considered. As the intensity of preferences

grows, users experience increased disutility from purchasing a platform that is not exactly

of their liking.

6 Conclusion

We have studied price competition between providers of two-sided platforms in a setting

where the two sides first pay a price to gain access to the functionalities of a platform and

25The Mathematica code is available from the authors.
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Figure 5: Total welfare comparison. Parameters: (a−bc)2
2b

= 1000, cD = 0.1, and f = 0.

then interact with each other under oligopolistic conditions. The paper provides a theory

for why firms may choose to make their platforms incompatible, despite the softer price

competition for users that ensues under compatibility. Incompatibility might lead to market

dominance and high profits by one of the platform providers, even if they are both ex ante

identical and there are not fixed costs of operation. We have also shown that symmetric and

asymmetric equilibria under incompatibility may exhibit user subsidization in order to spur

developer entry, a result that seems in line with analysts’ observations in many markets with

two-sided platforms. Finally, we have shown that platform competition results in socially

insufficient (excessive) developer entry under incompatibility (compatibility).

One limitation of our approach is that we did not allow platform providers to charge

royalty fees per unit of output sold to developers (in addition to the fixed access fee pDi ).

There is a strong incentive in our model to set such royalties below zero. On the one hand,

incompatible platforms partly internalize the effects of imperfect competition downstream.
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Therefore, they will want to distort second-period trade as little as possible. Negative roy-

alty fees would move such trade closer to efficiency. Compatible platforms, on the other

hand, are likely to set royalty fees below zero for strategic rather than efficiency reasons.26

Negative royalties would allow developers which traded with a given platform provider to

become tougher competitors in the second period, which would boost profits on the de-

veloper side because trade by developers with the competing platform provider would be

discouraged. This effect would be reversed if second-period competition displayed strategic

complementarity.

A second shortcoming of our approach is the assumption that products sold by developers

are homogeneous. Allowing for product differentiation would introduce an additional incen-

tive for the platform provider/s to promote developer entry. By doing so, developers could

better address users’ tastes, and hence the platform provider/s could extract the increase in

developer profits and user utility by raising license/entry fees and the price charged to users

for the platform. However, the main insights regarding the relative advantages of compati-

bility vs. incompatibility and social efficiency are likely to be qualitatively unaffected.

Perhaps a more important limitation is our focus on the cases in which compatibility

requires all platform providers to agree. This may be representative for technological stan-

dards, but in several contexts, a platform can be made compatible with another one by means

of an adapter. It would be interesting to examine the situations in which the developers for

one of the platforms can sell applications to users of both platforms, but the developers

for the competing platform can sell applications only to users of their platform. Although

technically challenging, analyzing the private and social incentives for partial compatibility

seems an important avenue for future research on compatibility in markets with two-sided

platforms.

26We are implicitly assuming that both types of agents trade with a platform provider simultaneously so
as to focus on the strategic or efficiency reasons why platform providers may want to keep royalties low. We
are cognizant that this sidesteps the remarkable result by Hagiu (2006a) that platform providers may wish
to use royalty fees to alleviate a hold-up problem when developers decide whether or not to trade with a
platform provider before users do.
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Appendix

Proof of Proposition 3. Letting

H(x) ≡
2(1− tx)2(a− bc−

√
2b(pD

1 +f)

x(2−tx)
)
√

2b(pD
1 +f)

[x(2−tx)]3
− t(a− bc−

√
2b(pD

1 +f)

x(2−tx)
)2

2b
+

2(1 + tx− t)2(a− bc−
√

2b(pD
2 +f)

(1−x)(2−t(1−x))
)
√

2b(pD
2 +f)

[(1−x)(2−t(1−x))]3
− t(a− bc−

√
2b(pD

2 +f)

(1−x)(2−t(1−x))
)2

2b
,

we have that the implicit function theorem applied on (14) yields

∂x(pU1 , p
D
1 )

∂pU1
=

1

H(x)
(22)

and

∂x(pU1 , p
D
1 )

∂pD1
=

(1− tx)(a− bc)√
2bx(2− tx)(pD1 + f)

− (1− tx)

x(2− tx)

H(x)
. (23)

Given that we restrict our attention to symmetric equilibria in which x =
1

2
, pU1 = pU2 ≡ pU

and pD1 = pD2 ≡ pD, the first-order conditions (15) and (16) can be simplified with the aid of

expressions (22) and (23) so as to get:

1

2
=

2b(pU +
(pD − cD)(a− bc)(2− t)√

2b(pD + f)(4− t)
)

2t(a− bc−
√

8b(pD + f)

4− t
)2 − 4(2− t)2

4− t
(a− bc−

√
8b(pD + f)

4− t
)

√
8b(pD + f)

4− t

(24)

and

2b(pU + (pD−cD)(a−bc)(2−t)√
2b(pD+f)(4−t)

)( (2−t)(a−bc)√
2b(4−t)(pD+f)

− 2(2−t)
4−t )

4(2−t)2
4−t (a− bc−

√
8b(pD+f)

(4−t) )
√

8b(pD+f)
4−t − 2t(a− bc−

√
8b(pD+f)

4−t )2

− (pD − cD)(a− bc)
√

4− t
4
√

2b(pD + f)3
=

(25)

1− (a− bc)
√

4− t
2
√

2b(pD + f)
.
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Plugging equation (24) into (25) yields

(a− bc)
√

4− t
8

(
4(f + cD) + t(pD − cD)√

2b(pD + f)3
) = 1, (26)

whence it is relatively simple to show that there exists a unique value of pD that solves

such equation.27 Denoting such a value of pD by pD∗∗, note that pD∗∗ > cD if and only if
(a− bc)2

2b
>

4(f + cD)

4− t
holds.

Using (24) and (26), we can find the price pU∗∗ charged to users in equilibrium by per-

forming some algebra:

pU∗∗ =
4t(4 + 2t− t2)(pD∗∗ + f)(pD∗∗ − cD)2 − 32(2− t)(3− t)(f + cD)(pD∗∗ + f)(pD∗∗ − cD)

(4− t)[4(f + cD) + t(pD∗∗ − cD)]2
.

(27)

In order for both platform providers charging a pair of prices (pU∗∗, pD∗∗) to constitute

an equilibrium, the values of the parameter space should be such that some conditions hold.

Thus, the marginal user (i.e., the one located at the middle of the segment) should attain a

positive utility, platform providers should make positive profits and a unilateral increase in

the user access fee should not increase user demand for the platform that raises such price (as

required by the monotonicity refinement). We proceed to derive the parameter restrictions

implied by each of these equilibrium conditions.

First, observe that the marginal user attains a positive utility if and only if uincbj (1/2) >

pU∗∗. Because uincbj (1/2) =
(2− t)(a− bc−

√
8b(pD∗∗ + f)

4− t
)2

4b
, expression (26) implies that

this condition is equivalent to the following one:

2(2− t)(4− t)(pD∗∗ − cD)2(pD∗∗ + f)

[4(f + cD) + t(pD∗∗ − cD)]2
> pU∗∗.

Making use of (27), we have that this inequality is satisfied if and only if the following holds:

(t3 + 6t2 − 40t+ 32)(pD∗∗ − cD)2 + 16(2− t)(3− t)(f + cD)(pD∗∗ − cD) > 0.

27Letting g(pD) ≡ (a− bc)
√

4− t
8

(
4(f + cD) + t(pD − cD)√

2b(pD + f)3
) in expression (26), the result follows because

g(−f) =∞, g(∞) = 0 and g′ < 0 (since t <
2
3
< 4).
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The left hand side is strictly convex in pD∗∗ (since t < 2/3) and takes a negative value for

pD∗∗ = −f (which clearly is the smallest admissible value of pD∗∗), so it follows that the

marginal user makes a positive utility in equilibrium if and only if pD∗∗ > cD, that is, if

and only if
(a− bc)2

2b
>

4(f + cD)

4− t
is satisfied. Hence, the parameter constraint that users

attain a positive utility implies that developers are not subsidized to enter the market in a

symmetric equilibrium with incompatible platforms.

Second, we study the conditions under which platform providers make non-negative prof-

its in a symmetric equilibrium. Profits made by each of them are equal to

Π∗∗1 = Π∗∗2 ≡ Π∗∗ =
pU∗∗

2
+ (pD∗∗ − cD)(

(a− bc)
√

4− t
2
√

2b(pD∗∗ + f)
− 1).

By (27) and (26), we have

Π∗∗ =
(pD∗∗ − cD)

(4− t)[4(f + cD) + t(pD∗∗ − cD)]2
[2t(4 + 2t− t2)(pD∗∗ + f)(pD∗∗ − cD)−

16(2− t)(3− t)(f + cD)(pD∗∗ + f) + 4(4− t)2(f + cD)(pD∗∗ − cD) + t(4− t)2(pD∗∗ − cD)2],

so note that Π∗∗ ≥ 0 if and only if h(pD∗∗) ≥ 0, where

h(pD∗∗) ≡ t(24− 4t− t2)(pD∗∗ − cD)2 + 2(4t2 − t3 + 32− 12t)(pD∗∗ − cD)(f + cD)−

16(2− t)(3− t)(pD∗∗ + f)(f + cD).

Because h′′ > 0 and h(−f) < 0, it follows that h(pD∗∗) ≥ 0 for sufficiently large pD∗∗, or

equivalently, for large enough
(a− bc)2

2b
. Let us refer to such a value of

(a− bc)2

2b
as W .28

Because h(cD) < 0, the condition that equilibrium profit is positive is more stringent than

28It is straightforward to show that the smallest value of pD∗∗ that makes profits non-negative is cD +
w(f + cD), where

w =
2(t3 + 4t2 − 28t+ 16) +

√
(t3 + 4t2 − 28t+ 16)2 + 64t(2− t)(3− t)(24− 4t− t2)

2t(24− 4t− t2)
.

The lower bound on
(a− bc)2

2b
can be obtained by using this value for pD in equation (26), whence we have

that the following condition should hold:

(a− bc)2

2b
≥ 64(1 + w)3(f + cD)

(4− t)(4 + tw)2
≡W .
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the one that makes the utility of the marginal user positive (which simply requires that

pD∗∗ > cD), so W >
4(f + cD)

4− t
.

The final condition that must hold in a symmetric equilibrium is the monotonicity con-

dition, which requires that ∂x(pU1 , p
D
1 )/∂pU1 < 0 and ∂x(pU1 , p

D
1 )/∂pD1 < 0 both hold at the

equilibrium prices. It is easy to prove that both ∂x(pU1 , p
D
1 )/∂pU1 and ∂x(pU1 , p

D
1 )/∂pD1 always

have the same sign at the symmetric equilibrium prices. Also, equation (15) implies that

∂x(pU1 , p
D
1 )/∂pU1 < 0 (evaluated at the symmetric equilibrium prices) if and only if

pU1 +
(pD1 − cD)(a− bc)(1− tx(pU1 , p

D
1 ))√

2b(pD1 + f)x(pU1 , p
D
1 )(2− tx(pU1 , p

D
1 ))

> 0. (28)

Using expressions (26) and (27) implies that the condition in (28) is equivalent to the fol-

lowing one:

4t(4− t2 + 4)(pD∗∗ + f)(pD∗∗ − cD)2 − 32(2− t)2(f + cD)(pD∗∗ − cD)(pD∗∗ + f)

(4− t)[4(f + cD) + t(pD∗∗ − cD)]2
> 0.

Therefore, the monotonicity requirement boils down to assuming that pD∗∗ > cD+
8(2− t)2(f + cD)

t(8− t2)
,

which can be shown to directly satisfy the non-negativity constraint on equilibrium prof-

its for t < 2/3 (since h(cD +
8(2− t)2(f + cD)

t(8− t2)
) > 0). Note by (26) that pD∗∗ ≥ cD +

8(2− t)2(f + cD)

t(8− t2)
if and only if

(a− bc)2

2b
≥ Z ′ ≡ 4(f + cD)(32 + 8t2 − 24t− t3)3

t3(8− t2)(4− t)5
.

To conclude the proof, we examine the conditions under which users of applications may

be subsidized when trading with a platform provider. Observe that expression (27) and the

fact that pD∗∗ > cD together imply that pU∗∗ ≤ 0 if and only if

t(4 + 2t− t2)(pD∗∗ − cD)− 8(2− t)(3− t)(f + cD) ≤ 0,

that is, users are subsidized in equilibrium if and only if the following inequality holds:

pD∗∗ ≤ cD +
8(2− t)(3− t)(f + cD)

t(4 + 2t− t2)
.
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Letting pD = cD +
8(2− t)(3− t)(f + cD)

t(4 + 2t− t2)
in the left hand side of expression (26) yields

(a− bc)
√

4− t
8

(
4(f + cD) + 8(2−t)(3−t)(f+cD)

(4+2t−t2)√
2b(f + cD + 8(2−t)(3−t)(f+cD)

t(4+2t−t2)
)3

),

which is not larger than 1 for
(a− bc)2

2b
≤ 4(f + cD)(t2 − 6t+ 12)3

(4− t)2t3(4 + 2t− t2)
≡ Z. This shows that

pU∗∗ ≤ 0 if and only if
(a− bc)2

2b
≤ Z. Because Z > Z ′ for t < 2/3, we have that users are

subsidized if
(a− bc)2

2b
∈ [Z ′, Z), whereas they are not subsidized if

(a− bc)2

2b
≥ Z.

Proof of Remark 1. We would like to see how many solutions (x, n1, n2) the following

system has:

(1− tx)n2
1

2b

(
a− bc
n1 + 1

)2

− pU =
(1− t (1− x))n2

2

2b

(
a− bc
n2 + 1

)2

− pU , (29)

pD =
x (2− tx)

2b

(
a− bc
n1 + 1

)2

− f , (30)

pD =
(1− x) (2− t (1− x))

2b

(
a− bc
n2 + 1

)2

− f . (31)

Note that we are imposing symmetry (pU1 = pU2 = pU and pD1 = pD2 = pD) because we study

symmetric equilibria only.

Notice first that

x =
1

2
and n1 = n2 =

√
b (a− bc)2 (pD + f)

(
2− t

2

)
2b (pD + f)

− 1 (32)

is one solution. The question is whether there are asymmetric solutions (solutions with x 6= 1
2

and n1 6= n2).

We begin by working with equation (30) to obtain:(
pD + f

)
2b

x (2− tx)
=

(
a− bc
n1 + 1

)2

.
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Likewise, equation (31) yields: (
pD + f

)
2b

(1− x) (2− t (1− x))
=

(
a− bc
n2 + 1

)2

.

Using these two expressions in (29), we have:

n1

n2

=

(
(1− t (1− x))x (2− tx)

(1− x) (2− t (1− x)) (1− tx)

) 1
2

. (33)

Now, solving for n1 in (30), and letting G ≡

√
2b
(
pD + f

)
(a− bc)2 , we obtain

n1 =

√
x (2− tx)

G
− 1. (34)

Likewise, using (31) we see that

n2 =

√
(1− x) (2− t (1− x))

G
− 1. (35)

Using (34) and (35), we have

n1

n2

=

√
x (2− tx)−G√

(1− x) (2− t (1− x))−G
. (36)

Letting
n1

n2

≡ y, we may write the system of two equations and two unknowns (x and y)

formed by (33) and (36) as follows:
y =

√
x (2− tx) (1− t (1− x))√

(1− x) (2− t (1− x)) (1− tx)

y =

√
x (2− tx)−G√

(1− x) (2− t (1− x))−G

. (37)

The pairs of y and x that solve this system (given values of the parameters) are also solutions

to the original system of equations.29 It is easy to see that x = 1
2

and y = 1 is a solution

regardless of the value of G. When x 6= 1
2
, the value of G becomes relevant. A simple change

of variables, however, confirms that the system is symmetric around x = 1
2
. Therefore, we

29Because y is the ratio n1
n2

, to recover the exact values of n1 and/or n2 we use (34) and (35).
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need only study the solutions for the case 0 ≤ x ≤ 1
2
: if x̂ < 1

2
is part of a solution, then

1− x̂ > 1
2

is part of another solution.

We now equate both expressions and solve for G to obtain:

G =

√
(2− t (1− x)) (1− x)

√
x (2− tx)

(√
1− tx−

√
1− t (1− x)

)
√

(2− t (1− x)) (1− x)
√

1− tx−
√

1− t (1− x)
√
x (2− tx)

.

Define

Y (x) =

√
(2− t (1− x)) (1− x)

√
x (2− tx)

(√
1− tx−

√
1− t (1− x)

)
√

(2− t (1− x)) (1− x)
√

1− tx−
√

1− t (1− x)
√
x (2− tx)

,

so that it holds that Y (x) = G. It is easy to show that (given t) Y (x) is strictly increasing

in x (over the range 0 ≤ x ≤ 1

2
). Therefore, given t, the maximum G such that the system

(37) has a solution (other than for x =
1

2
in which case G is irrelevant) is

lim
x→ 1

2

Y (x) =
(4− t)

3
2 t

2 (8− 4t+ t2)
.

Therefore, the system has at least one more solution if and only if

G ≤ (4− t)
3
2 t

2 (8− 4t+ t2)
.

We now show that when G ≤ (4− t)
3
2 t

2 (8− 4t+ t2)
the system has only one solution with x <

1

2
.

We reason by contradiction. Suppose that there were more than one solution. Consider two

such solutions (x1, y1) and (x2, y2) with x1, x2 <
1

2
. Obviously, a necessary condition for

(x1, y1) and (x2, y2) to be different is that x1 6= x2. Assume, without loss of generality, that

x1 < x2 <
1

2
. At these values of x we must have that Y (x1) = G and Y (x2) = G but this is

impossible because Y (·) is strictly increasing in x (over the range 0 ≤ x ≤ 1

2
). We conclude

that (37) has either one solution only (x =
1

2
, y = 1; this happens when G >

(4− t)
3
2 t

2 (8− 4t+ t2)
)

or it has three solutions (one with x =
1

2
, another one with x <

1

2
, and the symmetric
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solution with x >
1

2
; this happens when G ≤ (4− t)

3
2 t

2 (8− 4t+ t2)
).

Finally, we show that x =
1

2
satisfies the monotonicity criterion if and only if the system

has three solutions. We use the following expressions:

• Optimality condition for pD (see proof of Proposition 3)

(a− bc)
√

4− t
8

(
4(f + cD) + t(pD − cD)√

2b(pD + f)3
) = 1.

• Monotonicity condition for x =
1

2
(see proof of Proposition 3):

pD ≥ cD +
8(2− t)2(f + cD)

t(8− t2)
.

• Condition for the system to have three solutions (as derived above):

(4− t)3 t2

4 (8− 4t+ t2)2 ≥
2b
(
pD + f

)
(a− bc)2 .

The optimality condition for pD can be written as

(4− t)
64

(
4(f + cD) + t(pD − cD)

)2

(pD + f)2
=

(
pD + f

)
2b

(a− bc)2
.

Therefore, we can rewrite the condition for the system to have three solutions as:

(4− t)3 t2

4 (8− 4t+ t2)2 ≥
(4− t)

64

(
4(f + cD) + t(pD − cD)

)2

(pD + f)2

(4− t)2 t2

(8− 4t+ t2)2 ≥
(
4(f + cD) + t(pD − cD)

)2

16(pD + f)2

4t (4− t)
(8− 4t+ t2)

≥
(
4(f + cD) + t(pD − cD)

)
(pD + f)

.

We would like to see that

4t (4− t)
(8− 4t+ t2)

≥
(
4(f + cD) + t(pD − cD)

)
(pD + f)

(38)
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is satisfied when

pD ≥ cD +
8(2− t)2(f + cD)

t(8− t2)
. (39)

Given pD, cD, and f , let t∗ be the value of t such that both (38) and (39) are satisfied

with equality. (It is easy to see that this is the same t.)

We now show that as t increases from t∗, both (38) and (39) continue to be satisfied. To

see this, consider first (38). The derivative of the lhs with respect to t is

d

dt

(
4t (4− t)

(8− 4t+ t2)

)
=

64 (2− t)
(8− 4t+ t2)2 > 0.

The derivative of the rhs with respect to t is

d

dt

((
4(f + cD) + t(pD − cD)

)
(pD + f)

)
=
pD − cD

pD + f
> 0.

Because at t∗ (38) is satisfied with equality, we have that

4t∗ (4− t∗)
(8− 4t∗ + t∗2)

=

(
4(f + cD) + t∗(pD∗ − cD)

)
(pD∗ + f)

or (
8− 4t∗ + t∗2

)
=

4t∗ (4− t∗) (pD + f)

4(f + cD) + t∗(pD − cD)
.

We use this expression to derive the following:

d

dt

(
4t (4− t)

(8− 4t+ t2)

)∣∣∣∣
t∗

=
64 (2− t∗)

(8− 4t∗ + t∗2)2 =
64 (2− t∗)

8− 4t∗ + t∗2
4(f + cD) + t∗(pD − cD)

4t∗ (4− t∗) (pD + f)

>
64 (2− t∗)

8− 4t∗ + t∗2
(pD − cD)

4 (4− t∗) (pD + f)
=

64 (2− t∗)
4 (4− t∗) (8− 4t∗ + t∗2)

pD − cD

pD∗ + f

=
64 (2− t∗)

4 (4− t∗) (8− 4t∗ + t∗2)

d

dt

((
4(f + cD) + t(pD − cD)

)
(pD + f)

)∣∣∣∣∣
t∗

>
d

dt

((
4(f + cD) + t(pD − cD)

)
(pD + f)

)∣∣∣∣∣
t∗

.

The last inequality follows from

64 (2− t∗)
4 (4− t∗) (8− 4t∗ + t∗2)

≥ 1.
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Therefore at t∗:
d

dt
(lhs) >

d

dt
(rhs) .

Finally, note that the second derivative of the lhs wrt to t is

d2

dt2
(lhs) =

64 (8− 3 (4− t) t)
(8− 4t+ t2)3 ,

which is positive for 0 ≤ t ≤ 2
3
, and note as well that d2

dt2
(rhs) = 0. Therefore, as t grows

from t∗, (38) is satisfied.

Let’s now consider (39). The derivative of the rhs with respect to t is

d

dt

(
8(2− t)2(f + cD)

t(8− t2)

)
=

8(cD + f)(−32 + t2 (20− (8− t) t))
t2(8− t2)2

,

which is less than zero for 0 ≤ t ≤ 2
3
. Therefore, as t grows from t∗, (39) becomes less and

less stringent.

Suppose now that the parameter values are such that the monotonicity condition for

x =
1

2
hold. We must have

pD ≥ cD +
8(2− t)2(f + cD)

t(8− t2)
.

Now, reduce t so that this condition holds with equality (t must be reduced because the rhs

is decreasing in t; moreover, equality can always be attained because the limit of the rhs

as t ↓ 0 is ∞). At this point, the condition for the system to have three solutions is also

satisfied with equality. The above argument shows that at the original, higher, t we must

have that
4t (4− t)

(8− 4t+ t2)
≥
(
4(f + cD) + t(pD − cD)

)
(pD∗ + f)

and thus (38) is satisfied. We conclude that whenever the monotonicity condition for x =
1

2
holds, the system has three solutions. The same argument can be made to show that when

the system has three solutions, then the monotonicity condition for x =
1

2
holds.

Proof of Proposition 4. The left hand side of the expression in (26) for pD = pDe is

equal to 1 +
t

4
( 3

√
(4− t)(a− bc)2

8b(f + cD)
− 1), which exceeds 1 because it has been assumed that
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(a− bc)2

2b
≥ Z ′ and we have shown in the proof of Proposition 1 that Z ′ >

4(f + cD)

4− t
, so

that inequality
(a− bc)2

2b
>

4(f + cD)

4− t
is fulfilled. Therefore, it follows that pDe < pD∗, and

hence we have that ne > n∗∗. In addition, it is easy to see that pDe > cD because it holds

that
(a− bc)2

2b
>

4(f + cD)

(4− t)
.

Proof of Remarks 2 and 3. The expressions for W com (N∗) and W inc (n∗∗) are derived

exactly as in Sections 3.1 and 4.1, respectively.

We obtain W̃ inc as follows. Under asymmetric incompatibility only platform 1 has users

and developers in equilibrium. Every developer who traded with platform 1 makes profits

π̃inc1 =
x1(2− tx1)

2b

(
a− bc
n1 + 1

)2

.

Because the market is covered (x1 = 1), profits are:

π̃inc1 =
(2− t)

2b

(
a− bc
n1 + 1

)2

= (2− t)A 1

(n1 + 1)2 ,

where A =
(a− bc)2

2b
.

Welfare under asymmetric incompatibility is:

W̃ inc =

∫ 1

0

(1− ts)A
(

ñ∗1
ñ∗1 + 1

)2

ds︸ ︷︷ ︸
Users’ surplus

+

(
(2− t)A 1

(ñ∗1 + 1)2 − f − c
D

)
︸ ︷︷ ︸

Platform’s profits

ñ∗1

= (1− t

2
)A

(
1− 1

(ñ∗1 + 1)2

)
− (f + cD)ñ∗1.

The equilibrium number of developers ñ∗1 solves

π̃inc1 − f − p̃D1 = 0

or

(2− t)A 1

(ñ∗1 + 1)2 − f − p̃
D
1 = 0,

where p̃D1 is the solution to the constrained optimization programme presented in Section
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5.2. Therefore,

ñ∗1 =

√
A (2− t)
f + p̃D1

− 1.
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