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Abstract

This paper provides an introduction to the theory of games of strategic complementarities,
considers Bayesian games, and provides an application to global games.
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1 Introduction

Games of strategic complementarities are those in which any player increases his action in response

to an increase in the level of actions of rivals. The complementarity idea for an individual agent

goes back to Edgeworth (1881) with the notion that the marginal value of an action is increasing in

the level of other actions available to the agent. Many games display strategic complementarities,

including those with search, network externalities, oligopoly interaction, or technology adoption and

patent races. Additional examples include coordination failures in macroeconomics and �nancial

markets, as well as cumulative processes in the presence of complementarities.

The theory of monotone comparative statics and supermodular games (Topkis (1978, 1979),

Vives (1985, 1990) and Milgrom and Roberts (1990)) provides the set of tools to deal with comple-

mentarities. This theory, in contrast to classical convex analysis, is based on order and monotonicity

properties on lattices. The analysis of monotone comparative statics provides conditions under

which solutions to optimization problems change monotonically with a parameter. The theory of

supermodular games exploits order and monotonicity properties to ensure that the best response of

a player to the actions of rivals is increasing in their level. The approach is powerful. In the class of

supermodular games:

� Very general strategy spaces, including indivisibilities and functional spaces such as those

arising in dynamic or Bayesian games, are allowed.

� Equilibrium in pure strategies exists (without requiring quasiconcavity of payo¤s).

� The equilibrium set has an order structure with extremal elements (allowing a global analysis

of the set).

� There is an algorithm to compute extremal equilibria, which bound also the rationalizable set,

and the equilibrium set has nice stability properties.

�Monotone comparative statics results are obtained with minimal assumptions and unambiguous

predictions are possible even in the presence of multiple equilibria.

The last point is particularly relevant since coordination failures and multiple equilibria are typi-

cal in the presence of complementarities. Bank or debt runs, currency crises, low activity equilibria,

adoption externalities, and development traps are some examples.

In this paper I will provide a brief intuitive account of the theory based on a very simple framework

and I will develop some connections with games of incomplete information and more in particular,

global games. The reader is referred to Vives (2005) for a more detailed account of the summary

presented in this paper, and to Topkis (1998) and Vives (1999) for general treatments of the tools

and results associated to games of strategic complementarities.

I introduce a simple class of games in Section 2 to highlight the main results of the theory.

1



Section 3 deals with supermodular games and Section 4 with Bayesian games. Section 5 provides

an application to global games.

2 The basic ideas in a simple framework

In a game of strategic complementarities �the term was coined in Bulow et al. (1983)�each player

responds to an increase in the strategies of the rivals with an increase in his own strategy.

Consider a symmetric game with a continuum of players. The payo¤ to player i is given by

� (ai;ea; �) where ai 2 [0; 1] is the action of the player, ea is the average or aggregate action, and � is a
payo¤-relevant parameter. Suppose that � is smooth in all arguments with @2�= (@ai)

2
< 0, and let

r (ea; �) be the best response of an individual player to the aggregate action ea. Then any equilibrium
will be symmetric, with ea = ai = a and ful�lling r (a; �) = a. For interior solutions, we have that

@�=@ai = 0 and r (�) is continuously di¤erentiable with

r0 (ea) � @r (ea; �)
@ea = �

�
@2�

@ai@ea
�
=

 
@2�

(@ai)
2

!
:

Therefore,

sign fr0 (ea)g = sign� @2�

@ai@ea
�

and the best reply is increasing if @2�=@ai@ea � 0. Suppose also that @2�=@ai@� � 0, so that an

increase in � increases the marginal pro�t of the action of a player and consequently his best response

r (�) :

A classical example of the model are adoption, search or aggregate demand externalities (see,

e.g., Diamond (1981), Dybvig and Spatt (1983), or Cooper and John (1988)). The action ai may

be the e¤ort of trader i in looking for a partner or the adoption level of a technology. The bene�t

is proportional to own e¤ort/adoption level and is increasing in the aggregate e¤ort/adoption levelea of others
� (ai;ea; �) = �aig (ea)� C (ai) ;

with � > 0 and where g (�) and the cost of e¤ort/adoption C (�) are increasing nonnegative functions.

In this case, @2�=@ai@ea = �g0 (ea) � 0 and @2�=@ai@� = g (ea) � 0.
In games of strategic complementarities we have typically multiple Pareto�rankable equilibria.

For example, suppose that g has an S-shaped function and C 0 (a) � a. Then r (ea) = �g (ea) and
there may be three equilibria given by the solutions (i.e., a;ba; and a) to �g (a) = a as depicted in

the lower branch of Figure 1. Larger activity equilibria dominate equilibria with less activity since

there are positive spillovers: @�=@ea = �aig0 (ea) � 0.
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Monopolistic competition provides another illustration. Here ai is the price of the variety

produced by �rm i, ea the average price in the market and �, say, the (common) marginal cost. We
have then

� (ai;ea; �) = (ai � �)D (ai;ea)
with D (�) the demand function. It is easy to check that @2 log �=@ai@ea = @2 logD=@ai@ea > 0 in

many demand systems �where the elasticity of demand for product i is decreasing in the average price.

Under this condition r0 (ea) > 0 because best replies are invariant to an increasing transformation of
the payo¤s, such as the logarithm. Furthermore, @2�=@ai@� = �@D=@ai > 0 with downward sloping

demand. The monopolistic competition model has been used extensively in the growth, development,

regional, and international trade literatures to generate complementarities and multiplier processes

(see Matsuyama (1995) for a survey).

Several properties of the equilibria in the examples are easy to derive:

1. Existence and order structure of the equilibrium set. There exists a largest (a) and a smallest

(a) equilibrium.

2. Multiple equilibria and welfare. There are multiple equilibria when strategic complementarities

are su¢ ciently strong: r0 (a) > 1 for some candidate equilibrium such as point ba in Figure 1.
Equilibria can be Pareto ranked when there are positive spillovers.

3. Stability and rationalizability. Best�reply dynamics starting at a = 0 (resp,. a = 1) converge

to a (resp., a). Similarly, iterated elimination of strictly dominated strategies de�nes two
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sequences that converge, respectively, to a and a. This means that rationalizable strategies

will lie in the interval [a; a], and if the equilibrium is unique then the game will be dominance

solvable (and globally stable).

4. Comparative statics and multiplier e¤ects. An increase in the parameter � leads to an increased

action in equilibrium, via out-of-equilibrium best-reply dynamics, and this increase will be over

and above the direct e¤ect of the increase in the parameter. Indeed, increasing � will move

r (�) upward (as in Figure 1), and the equilibrium level of a will increase. Starting at a = a,

the direct e¤ect will lead us to r(a) > a and the full equilibrium impact to a0 > a. At a stable

equilibrium a� : r0 < 1,
@a�

@�
=
@r=@�

1� r0 >
@r

@�

provided that r0 > 0. The multiplier is at work whether we focus on extremal (or stable)

equilibria, or consider best�response dynamics after the perturbation. This is so even starting

at an unstable equilibrium, or at an equilibrium that disappears once � increases (e.g. in

Figure 1 the unstable equilibrium ba disappears with the increase in �, moving r (�) upward,
and best�reply dynamics lead to the new equilibrium a0).

3 Supermodular games

Consider the game (Ai; �i; i 2 N), where N is the set of players, i = 1; :::; n; Ai is the strategy

set and �i the payo¤ of player i 2 N (de�ned on the cross product of the strategy spaces of the

players A). Let ai 2 Ai and a�i 2
Q
j 6=iAj (i.e., we denote by a�i the strategy pro�le (a1; :::; an)

excluding the ith element). In Euclidean space a supermodular game is one where for each player

i, the strategy set Ai is a compact rectangle (or "box"), the payo¤ function �i is continuous and

ful�lls two complementarity properties:

� Supermodularity in own strategies (�i is supermodular in ai): the marginal payo¤ to any

strategy of player i is increasing in the other strategies of the player.

� Strategic complementarity in rivals�strategies (�i has increasing di¤erences in (ai; a�i)): the

marginal payo¤ to any strategy of player i is increasing in any strategy of any rival player.

In a more general formulation of a supermodular game, strategy spaces need only be �complete

lattices�and the continuity requirement can be weakened. Supermodularity and increasing di¤er-

ences can also be weakened to de�ne an �ordinal supermodular�game, relaxing supermodularity to

the weaker concept of quasi�supermodularity and increasing di¤erences to a single�crossing prop-

erty (see Milgrom and Shannon (1994)). Such properties �unlike supermodularity and increasing
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di¤erences�have no di¤erential characterization and need not be preserved under addition or partial

maximization operations.

In a supermodular game, very general strategy spaces can be allowed. These include indivisi-

bilities as well as functional strategy spaces, such as those arising in dynamic or Bayesian games.

Regularity conditions such as concavity and interior solutions can be dispensed with.

Results 1-4 in the simple framework, described in the previous section, generalize in a supermod-

ular game:

1� There always exist extremal equilibria: a largest a and a smallest element a of the equilibrium

set. If the game is symmetric the extremal equilibria are symmetric.

2� Multiple equilibria are common. If the game displays positive spillovers, i.e. the payo¤ to a

player is increasing in the strategies of the other players, then the largest equilibrium point is

the Pareto best equilibrium, and the smallest one the Pareto worst.

3� Simultaneous best-reply dynamics approach the �box� [a; a] de�ned by the smallest and the

largest equilibrium points of the game; and converge monotonically downward (upward) to an

equilibrium starting at any point in the intersection of the upper (lower) contour sets of the

largest (smallest) best replies of the players. The extremal equilibria a and a correspond to the

largest and smallest serially undominated strategies. Therefore, if the equilibrium is unique

then the game is dominance solvable (and globally stable).

4� If �i (ai; a�i; �) has increasing di¤erences in (ai; �) for each i then with an increase in �: (i)

the largest and smallest equilibrium points increase; and (ii) starting from any equilibrium,

best�reply dynamics lead to a larger equilibrium following the parameter change.

Those results hold for multidimensional strategy spaces, be it discrete or continuous, functional

spaces, as well as for payo¤s which need not be smooth or concave. In order to obtain the desired

results only the monotonicity properties of incremental payo¤s and the order properties of strategies

matter. The approach is based on monotone comparative statics results developed by Topkis (1978)

and the application of Tarski�s �xed point theorem to increasing functions (Tarski (1955)).

4 Bayesian games

The approach has proved useful when analyzing Bayesian games, in particular the di¢ cult issue of

existence of equilibrium in pure strategies with a continuum of types and/or actions. Results have

been obtained for supermodular games with general action and type spaces (Vives (1990)); for games

in which each player uses a strategy increasing in type in response to increasing strategies of rivals
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(Athey (2001)); and for �monotone supermodular" games with general action and type spaces (Van

Zandt and Vives (2007)). We will brie�y describe the last contribution and apply it to the analysis

of a global game example in the next section.

Let Ti (a subset of Euclidean space) be the set of possible types ti of player i. The types of

the players are drawn from a common prior distribution � on T =
Qn
i=0 Ti , where T0 is residual

uncertainty not observed by any player. The action space of player i is a compact rectangle of

Euclidean space Ai, and his payo¤ is given by the (measurable and bounded) function �i : A�T ! R.

The ex post payo¤ to player i when the vector of actions is a = (a1; :::; an) and when the realized

types t = (t1; :::; tn) is thus �i (a; t). Action spaces, payo¤ functions, type sets, and the prior

distribution are common knowledge. The Bayesian game is described by (Ai; Ti; �i; i 2 N).

A pure strategy for player i is a (measurable) function �i : Ti ! Ai that assigns an action to

every possible type of the player. Let �i denote the strategy space of player i and identify two

strategies if they are equal with probability 1. We can de�ne a natural order in the strategy space

�i : �i � �0i if �i (ti) � �0i (ti), in the usual componentwise order, with probability one on Ti.

This formulation of a Bayesian game encompasses both common and private values as well as

perfect or imperfect signals.

Van Zandt and Vives (2007) show the following result. Let �(T�i) be the set of probability

distributions on T�i and let player i�s posteriors be given by the (measurable) function pi : Ti !

�(T�i), consistent with the prior � (the common prior assumption can be relaxed). De�ne a

monotone supermodular game as follows.

1. Supermodularity in payo¤s: �i supermodular in ai, and with increasing di¤erences in (ai; a�i).

2. Complementarity between action and type: �i has increasing di¤erences in (ai; t).

3. Monotone posteriors: pi : Ti ! �(T�i) is increasing with respect to the partial order on

�(T�i) of �rst�order stochastic dominance (a su¢ cient, but not necessary, condition is that

the prior � be a¢ liated).

In a monotone supermodular game there is a largest and a smallest Bayesian equilibrium and

each one is in monotone strategies in type. There might be other equilibria that are in nonmonotone

strategies but, if so, they will be between the largest and the smallest one, which are monotone in

type. Furthermore, the extremal equilibria are increasing in the posteriors.

Monotone supermodular games have been applied to characterize equilibria in adoption games on

graphs, multimarket oligopoly, team problems, and games of voluntary disclosure (see Vives (2005)).
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5 Global games

Global games were introduced by Carlsson and van Damme (1993) as games of incomplete infor-

mation with types determined by each player observing a noisy signal of the underlying state. The

aim is to select an equilibrium with a perturbation of a complete information game. The authors

show that in 2 � 2 games if each player observes a noisy signal of the true payo¤s and if ex ante

feasible payo¤s include payo¤s that make each action strictly dominant, then as noise becomes small

an iterative strict dominance selects one equilibrium. The equilibrium selected is the risk-dominant

one if there are two equilibria in the complete information game. Carlsson and van Damme do not

explicitly consider supermodular games but when we have two equilibria in a complete information

game, the game is one of strategic complementarities. Global games have been developed in a range

of applications by Morris and Shin (2002). I will present here an example, a variation of the simple

framework of Section 2 with incomplete information, to highlight the power of the supermodular

game approach.

Suppose an agent must decide whether or not to adopt a new technology (or whether to �invest�,

�act�, or �participate�). The action is ai = 0 if there is no adoption and is ai = 1 if there is adoption.

The cost �i of adoption for agent i follows a normal distribution with mean �� and variance �
2
�.

The parameters �i and �j ( j 6= i) are potentially correlated with covariance ��2� and correlation

coe¢ cient � 2 [0; 1). The bene�t of adoption is g (ea), where ea is the total mass adopting (between
0 and 1), and no adoption yields no bene�t. We have thus a variation, with idiosyncratic random

parameter, of the simple framework where the payo¤ to player i is:

� (ai;ea; �i) = ai (g (ea)� �i) :
If g0 > 0 then the game is monotone supermodular because �(ai;ea; �i) has increasing di¤erences

in (ai; (ea;��i)) (that is, @2�=@ai@ea = g0 (ea) > 0 and @2�=@ai@ (��i) = 1 > 0) and types are

a¢ liated (because of normality). It follows that extremal equilibria exist, are symmetric (because

the game is symmetric), and are in monotone (decreasing) strategies of the form ai = 1 if and only

if �i � b�. Let g (ea) = �ea with � > 0 for purposes of illustration.
From the point of view of player i and given �i, the adopting mass when other players use the

equilibrium threshold b� will be estimated by
ea (�i) � Pr[�j � b�j�i] = � b� � (��i + (1� �)��)

��
p
1� �2

!
;

where � (�) is the cumulative distribution function of the standard normal. The agent will adopt

if and only if �ea (�i) � �i and the best reply r
�b�� is given implicitly by the solution in � to
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�
�
Pr[�j � b�j�]�� � = 0. The equilibrium threshold b� will satisfy

r̂
�b�� = b�;

where

r̂
�b�� � ��Pr[�j � b�j�i = b�]� = �� r1� �

1 + �

 b� � ��
��

!!
:

The solution will be unique if r̂0 < 1 or �
p
(1� �) = (1 + �) (��)�1 � (�) < 1, where � (�) is the

density of the standard normal. It is then immediate1 that the equilibrium will be unique when

�

s
1� �
1 + �

� 1

2��2�
< 1:

This will be so when the degree of strategic complementarity is not too strong. This may happen

either because payo¤ complementarities are weak (� low); or because each player ex ante faces a

large cost uncertainty (�� high); or because the correlation of the costs is high (� close but not equal

to 1). All three factors tend to lessen the strength of strategic complementarities.

Let � = 1 in order to illustrate the e¤ect of uncertainty. If costs are perfectly correlated then there

are multiple equilibria for � 2 (0; 1). In this case, there is complete information because a player,

by knowing his own cost, knows the costs of any other player. However, a little bit of imperfect cost

correlation (� close to 1) or a di¤use prior (�2� !1) �following the idea of equilibrium selection in

global games�will yield a unique equilibrium. Note, for example, that for � = 1, r̂
�b�� tends to

1=2 either when �� ! 1 or as � ! 1, yielding the unique solution b� = 1=2. Figure 2 displays r̂ (�)
for the case �� = 1=2, and b� = �� = 1=2 is the equilibrium threshold (with the cases � = :25 and

� = :75). In this case if
p
(1� �) = (1 + �)=

p
2��2� > 1, two more equilibria appear.

Either with a di¤use prior or when the cost of a player gives very precise information about

the costs of others, the (strategic) uncertainty of player i is maximal about the behavior of others.

In both cases cases the player puts very little weight on prior information: when �2� is very large

because the prior is �at; when is � close to 1 because the type of the player predicts almost perfectly

the types of others. This induces a best response for the player which is quite ��at�, that is, not

very sensitive to the threshold used by others and uniqueness obtains.

A standard procedure in a global game (e.g. Morris and Shin (2002)) would �nd the largest and

smallest equilibrium thresholds by iterated elimination of dominated strategies, show that there is no

loss of generality is assuming threshold strategies, and �nally �nd conditions under which the largest

and smallest equilibrium thresholds coincide.2 By using the theory of (monotone) supermodular

1 If x � N
�
�; �2

�
then f (�) =

�
�
p
2�
��1

, where f is the density of x.
2Frankel, Morris, and Pauzner (2003) obtain a generalization of the uniqueness result to games of strategic com-

plementarities.

8



games we obviate the step of solving the iterated elimination of dominated strategies process, because

in a supermodular game extremal equilibria are the outcome of iterated elimination of dominated

strategies; we obtain immediately that extremal equilibrium strategies are of the threshold form

�because in a monotone supermodular game extremal equilibria are monotone in type; and we

bring forward the intuition for the uniqueness result in terms of lessening the strength of strategic

complementarities. This helps to understand why in some occasions reducing noise and in others

increasing it is necessary to obtain a unique equilibrium.

Indeed, we can start by noting that the game is monotone supermodular. This means that

extremal equilibria exist and are in monotone (threshold) strategies. Those extremal equilibria can

be found starting at extremal points of the strategy sets of players (b� =1 or b� = �1) and iterating
using best responses. Typically, we must make sure that the process is not stuck at extremal points

of the strategy space (and boundary assumptions may be used for this purpose). The extremal

equilibrium thresholds bound the set of rationalizable strategies, and if the equilibrium is unique

then the game is dominance solvable. The condition for equilibrium uniqueness is precisely that

strategic complementarities are not too strong.

In the region where equilibrium is unique we can perform easily comparative statics analysis. For

example, we can check that there is a multiplier e¤ect of public information. An increase in �� will

have an e¤ect on the equilibrium threshold b� over and above the direct impact on the best response
of a player @r=@�� < 0. Indeed, the prior mean �� of � can be understood as a public signal of
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precision
�
�2�
��1

and, exactly as in the simple framework,����� db�d��
����� = j@r=@��j

1� r0 >

���� @r@��
����

whenever the uniqueness condition (r0 < 1) is met since the game is of strategic complementarities

(r0 > 0). The multiplier is largest when r0 is close to 1, that is, when we approach the multiplicity

of equilibria region. The multiplier e¤ect of public information is emphasized by Morris and Shin

(2002) in terms of the coordinating potential of public information beyond its strict information con-

tent. The reason is that public information becomes common knowledge and a¤ects the equilibrium

outcome. Every player knows that an increase in �� will shift downward the best replies of the rest

of the players and everyone will be more cautious in adopting.

The uniqueness property is nice in a game, but we can still perform comparative statics analysis

in a game of strategic complementarities even if there are multiple equilibria. For example, in the

uniqueness region, r0 < 1, we have that db�
d��

= @r=@��
1�r0 < 0. In the multiple equilibrium region the

result still holds for extremal equilibrium thresholds �or for reasonable out-of-equilibrium dynamics

that eliminate the middle �unstable� equilibrium. Indeed, we know that extremal equilibria of

monotone supermodular games are increasing in the posteriors of the players. A su¢ cient statistic

for the posterior of a player under normality is E (�j j�i) = ��i + (1� �)��; which is increasing in

�� for � < 1. It follows then that increasing �� will increase the extremal equilibrium thresholds.
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