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Abstract

In many markets consumers have imperfect information about the utility they derive from
the products that are on offer and need to visit stores to find the product that is the most
preferred. This paper develops a discrete-choice model of demand with optimal consumer search.
Consumers first choose which products to search; then, once they learn the utility they get from
the searched products, they choose which product to buy, if any. The set of products searched
is endogenous and consumer specific. Therefore imperfect substitutability across products does
not only arise from variation in their characteristics but also from variation in the costs of
searching them. We apply the model to the automobile industry. Our search cost estimate is
highly significant and indicates that consumers conduct a limited amount of search. Estimates of
own- and cross-price elasticities are lower and markups are higher than if we assume consumers
have full information.
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1 Introduction

In many markets, like those for automobiles, electronics, computers, and clothing, consumers typi-

cally have to visit stores to find out which product they like most. Though preliminary information

about products sold in these markets is usually easy to obtain either from television, the Inter-

net, newspapers, specialized magazines, or just from neighbors, family, and friends, consumers

search because some relevant product characteristics are difficult to quantify, print, or advertise. In

practice, since visiting stores involves significant search costs, most consumers engage in a limited

amount of search.1

Earlier work on the estimation of demand models (Berry, Levinsohn, and Pakes, 1995, 2004;

Nevo, 2001; Petrin, 2002) has proceeded by assuming that consumers have perfect information

about all the products available in the market. Since in most markets product information is

gathered by consumers and/or advertised by firms, there are two natural ways to interpret the

perfect information assumption made in earlier work. The first is that search costs are negligible

for all consumers. The second interpretation is that firms’ advertisements reach all consumers

and convey all relevant information. In the market settings referred to above, the full information

assumption is, arguably, unrealistic.

In a recent study of the US computer industry, Sovinsky Goeree (2008) shows that departing

from the perfect information assumption is important for obtaining realistic estimates of demand

and supply parameters. In her model, firms distribute advertisements about the existence and

characteristics of the computers they sell. Advertisements are perfectly informative but not all

consumers are reached by them. Moreover, consumers differ in characteristics that affect their

exposure to advertisements. As a result consumers end up having heterogeneous and limited in-

formation about the existing alternatives in the market. Yet, in the setting of Sovinsky Goeree

(2008) consumers do not need to incur any search costs to evaluate the utility they derive from the

alternatives they happen to be informed of via the advertisements.

This paper adds to the literature on the structural estimation of demand and supply by present-

ing a discrete choice model of demand with optimal consumer search. To the best of our knowledge

our paper is the first to do this in a Berry, Levinsohn, and Pakes (1995) (BLP hereafter) framework.

1Several recent empirical papers have found that consumers search relatively little. For instance, Honka (2014)
reports that consumers obtain an average of 2.96 quotes when shopping for car insurance. De los Santos, Hortaçsu,
and Wildenbeest (2012) find that over 75 percent of consumers visited only one online bookstore before buying
a book online, whereas De los Santos, Hortaçsu, and Wildenbeest (2015) find that the mean number of online
retailers searched is less than 3 for MP3 players. Some other examples of markets in which consumers are found
to search little are S&P 500 index funds (Hortaçsu and Syverson, 2004) and automobiles (Moorthy, Ratchford, and
Talukdar, 1997; Scott Morton, Silva-Risso, and Zettelmeyer, 2011).
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The distinctive feature of the BLP framework is that the utilities of the products also depend on

a structural error term, which is known as an unobserved product characteristic in this literature.

This structural error is crucial for modeling price endogeneity, and naturally leads to estimation

based on aggregate data. An important difference with the demand model in BLP is that in our

model consumers first decide which sellers to visit in order to inspect the products they sell. Doing

so is costly; after having incurred search costs to visit sellers, consumers obtain all the relevant

information about the products inspected, and decide which product to acquire, if any. Search

costs vary across individuals and firms so consumers choose to visit distinct subsets of sellers even

if they have similar preferences, as for instance happens in the conditional logit model. In our

model consumer choice sets are thus endogenous and consumer specific. As a result, imperfect

substitutability across products does not only arise from product differentiation but also from the

variation in consumer choice sets generated by costly search. Similar to the effects of advertis-

ing in Sovinsky Goeree (2008), search frictions thus generate heterogeneous and limited consumer

information.

We apply the model to the automobile market. The automobile market is precisely a market

in which advertisements, reports in specialized magazines, television programs and the Internet

convey much but not all the relevant information about the models available. As a result, a great

deal of new car buyers visit dealerships to view, inspect, and test-drive cars. We model consumers’

search decisions by letting consumers make a tradeoff between the expected gains from searching,

which are based on information about car characteristics that are observed without doing an in-

store search (design, size, horsepower, fuel efficiency, prices, etc.), and the cost of searching, which

we relate to dealership locations and certain consumer demographics.

The complexity of the real-world setting to which we apply our model—specifically, firms sell-

ing multiple products and search costs that are alternative specific—makes the computation of

consumers’ optimal search sets a challenge. Our problem is indeed related to the general class of

portfolio problems discussed in Chade and Smith (2006). In these problems a decision maker must

simultaneously choose among a set of ranked stochastic options; each choice is costly and only the

best realized option is exercised. When there are many alternatives available in the market, finding

the optimal choice set is an extremely complex task because of the large number of choice sets to

be evaluated. Chade and Smith (2006) provide an algorithm, known as the Marginal Improvement

Algorithm (MIA), that identifies the optimal solution for some classes of problems. Unfortunately

we cannot apply the MIA algorithm to our setting, because of the aforementioned complexities

that are specific to our application. Instead, to address the dimensionality problem that arises
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because of the large number of potential choice sets a consumer faces, we add an (unobservable)

choice-set specific error term to the costs of searching a subset of alternatives. The role of this

shock is analogous to the error term in logit models and allows us to compute, for every consumer,

the probability with which she searches any given choice set.

We use data from the Dutch market for new cars to estimate the model. We provide background

information on this market in Section 2. Survey data reveal two important facts. First, consumers

visit a limited number of car dealers before buying a car and this number varies substantially across

consumers. Second, a great deal of the dealer visits involve test-driving cars. We interpret these two

facts as suggesting that models of perfect information and models of imperfect information in which

consumers just shop for lower prices are likely to be inapt. Instead, we formulate a model in which

consumers have imperfect information and consumers have to search to evaluate the alternatives

on sale. In this section we also provide some reduced-form evidence that search behavior is related

to demographics such as income, family size, age, and distances to dealerships.

We develop our search model in Section 3 and discuss estimation and identification in Section

4. The model can be estimated using car characteristics and aggregate-level data on prices and

market shares, as well as data on dealership locations and consumer demographics. By exploiting

variation in distances from consumer households to car dealerships the magnitude of search costs

can be identified. To obtain more precise estimates and to help identification we supplement the

aggregate-level data with the survey data mentioned above—this enables us to relate consumer

demographics to the characteristics of products that are searched and purchased.

The data and estimation results are presented in Section 5. Our search cost estimates are highly

significant. One advantage of our model is that it nests the demand model of BLP. Our paper shows

that taking into account search costs leads to lower estimates of own- and cross-price elasticities

and higher estimates of price-cost margins. We conclude that accounting for costly search and its

effects on generating heterogeneity in consumer choice sets is important for explaining variability

in purchase patterns.

In Section 5 we also use the estimates to perform several counterfactual analyses. Specifically,

taking our estimates as a starting point, simulations indicate that for some car models prices may

be higher in the full information model than in the costly search model. To understand this perhaps

surprising result, we note two important aspects of our model. The first is that we assume consumers

observe prices before searching. In such a case, costly search has two implications on firm pricing

(Haan and Moraga-González, 2011). On the one hand we get the standard result from the search

literature that costly search leads to smaller consumer choice sets, which gives firms incentives to
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raise prices. On the other hand, costly search makes it more important for a firm to compete

for visits. Since price is one of the product features that consumers use to make search decisions,

costly search pushes firms to cut their prices. Which of these two effects dominates depends on

search costs as well as competition—both of which are determined at the car model level. The

second aspect is that in our model the decision to participate is endogenous because consumers

have the option to choose the outside alternative right away. In such a case, an increase in search

costs results in an increase in the number of consumers who opt out of the new car market and, as

shown in Moraga-González, Sándor, and Wildenbeest (2014), this may result in lower prices. We

also simulate the competitive effects of changes in the way manufacturers use their dealer networks

and find mergers of dealerships to have non-trivial effects on prices and profits.

Related literature

Our paper builds on the theoretical and empirical literature on consumer search. At least since

the seminal article of Stigler (1961) on the economics of information a great deal of theoretical

and empirical work has revolved around the idea that the existence of search costs has nontrivial

effects on market equilibria. Part of the effort has gone into the study of the effects of costly search

in homogeneous product markets (see for instance Burdett and Judd, 1983; Reinganum, 1979;

Stahl, 1989). In this literature a fundamental issue has been the existence of price dispersion in

market equilibrium. Another tradition has been the study of costly search in markets with product

differentiation. The seminal paper is Wolinsky (1986), who notes that search costs generate market

power even in settings with free entry of firms. More recent contributions investigate how product

diversity (Anderson and Renault, 1999), product quality (Wolinsky, 2005), and product design

(Bar-Isaac, Caruana, and Cuñat, 2012) are affected by costly search. As in our model, in this

literature consumers search for a good product fit, and not for lower prices. Our search model is

most closely related to the logit search model discussed in Anderson, De Palma, and Thisse (1992),

but we allow for asymmetric multi-product firms, consumer heterogeneity in both preferences and

search costs, and allow (deviation) prices to be observable before searching.2

Some recent empirical research on consumer search behavior has focused on developing tech-

niques to estimate search costs using aggregate market data. Hong and Shum (2006) develop a

structural method to retrieve information on search costs for homogeneous products using only price

data. Moraga-González and Wildenbeest (2008) extend the approach of Hong and Shum (2006) to

the case of oligopoly and present a maximum likelihood estimator. Hortaçsu and Syverson (2004)

2See Section 7.6 (pp. 246–248) of Anderson, De Palma, and Thisse (1992).
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study a search model where search frictions coexist with vertical product differentiation. Our paper

contributes to this line of work by incorporating consumer search into the BLP framework.

A number of recent papers present related models of search and employ micro- or aggregate-level

data on search behavior to estimate preferences as well as the costs of searching (Kim, Albuquerque,

and Bronnenberg, 2010; De los Santos, Hortaçsu, and Wildenbeest, 2012; Seiler, 2013; Dinerstein,

Einav, Levin, and Sundaresan, 2014; Honka, 2014; Koulayev, 2014; Pires, 2014). An important

difference between these papers and ours is that they do not model unobserved product charac-

teristics and hence they do not allow for price endogeneity. Moreover, while most of these papers

require individual-specific choice data for estimation, our model, like Kim, Albuquerque, and Bron-

nenberg (2010), can be estimated using market level data. However, whereas Kim, Albuquerque,

and Bronnenberg (2010) use aggregate product search data to estimate their search model, our

model requires a search cost shifter but otherwise has similar data requirements as BLP-type dis-

crete choice models of demand. Nevertheless, as shown later, our model can be easily extended to

incorporate more detailed search data using micro moments.

Our paper also fits into a broader literature that estimates demand for automobiles, which

includes BLP, Goldberg (1995), and Petrin (2002).3 Recent papers in this literature have studied

car dealership locations and how this affects consumer demand and competition. For instance,

Albuquerque and Bronnenberg (2012) use transaction level data as well as detailed data on the

location of consumers and car dealers to estimate a model of supply and demand and find that

consumers have a strong disutility of demand for travel. In a related paper, Nurski and Verboven

(2013) focus on dealer networks to study whether the exclusive contracts often used in the European

car market act as barrier to entry. The most important difference between these papers and our

paper is that they assume consumers have perfect information about all the alternatives in the

market. This means distance from a consumer to a car dealer is interpreted as a transportation

cost, i.e., distance is treated as a product characteristic that enters directly in the utility function.

In contrast, in our paper distance enters as a search cost and as such generates variation in the

subsets of cars sampled by consumers. We compare the two approaches in Section 5 and show

that the elasticity estimates and markups from the search cost model are quite different from those

obtained from the transportation cost model.

3See Murry and Schneider (2015) for an overview of studies on the economics of retail markets for new and used
cars.
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2 Dutch Car Market

In 2008 approximately 500,000 new passenger cars were sold in the Netherlands, which makes it the

sixth biggest car market in Europe in terms of sales. The top selling make is Volkswagen, which in

2008 had a market share of 9.2 percent, followed by Ford (8.7 percent), Opel (8.3 percent), Peugeot

(8.2 percent), and Toyota (8.0 percent). The most popular car models tend to be small in size—in

2008, the two top selling models were the Peugeot 207 and Opel Corsa (both are in the so-called

supermini class) followed by the Volkswagen Golf (small family car class).

In this section we use survey data to provide some background information on search behavior

in the Dutch car market and to motivate the search model we will develop in Section 3. The

data was obtained from TNS NIPO (www.tns-nipo.com), a Dutch survey agency. As part of their

ongoing investigation (named “De Nederlandse Automobilist”) on the characteristics and behavior

of Dutch motorists, over 1,200 car drivers are surveyed every year. These drivers are part of

TNS NIPObase, which is a panel of around 200,000 respondents. The dataset contains 2,530

observations—1,297 for the survey carried out in 2010 and 1,233 for the 2011 survey. Our data

consists of a subset of the questions in the survey and focuses on two aspects of consumer decision

making, namely the product-orientation and the purchase decision. Each observation corresponds

to a single respondent. All questions in the survey relate to the car that is owned by the respondent

at the time of questioning. We have information about the make and model of that car, as well

as the year in which the car was bought. We also know whether the car they bought was used

or new. In addition, the respondents answered questions that provide useful information on how

consumers search in this market. In particular, respondents reported which dealers they visited

before buying the car, and at which dealers they did a test drive. Finally, the respondents answered

questions about their household income, household size, age, whether there are children living in

the household, and zip code.

Figure 1 gives a histogram of the number of dealers visited by respondents who bought a new car.

We focus on purchases between 2003 and 2008 only, since that period overlaps with the aggregate

data we will be using for the main analysis, giving us a total of 1,250 respondents who bought a

car between those years, of which 540 were new cars. Note that the number of dealers visited only

reflects the number of dealers of different brands visited, so if a respondent visited two dealers of

the same brand, it is only counted as one visit. The average number of dealers visited for new

car purchases is 2, which is slightly below the average of 3 dealers found by Moorthy, Ratchford,

and Talukdar (1997) for the United States in the early nineties. Although close to 40 percent of
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Figure 1: Histogram number of dealers visited for new car purchases

respondents visit at least one dealer of a single brand only, the distribution is positively skewed

with some consumers visiting dealers of as many as 12 different brands. Approximately 16 percent

of respondents claim they have not visited any dealers.4

The evidence obtained from our survey data serves to rule out a model in which consumers have

perfect information as an accurate representation of demand. A first natural interpretation of the

full information model is that consumers know all they need to know in order to conduct a purchase

decision. Under this interpretation, consumers would visit one and only one dealer, and moreover

every visit would result in a purchase. Our survey evidence clearly rejects this proposition. In

fact, as shown in Figure 1, a substantial number of consumers visits more than one car dealership.

Moreover, in 2008 around 44 percent of consumers did not buy a new car conditional on having

visited at least one dealer that year.

An alternative interpretation of the full information model is that even though consumers do

not observe all relevant car characteristics before visiting the dealerships, consumers can visit them

and learn the utility they derive from the various cars at zero cost. Under this interpretation,

consumers would then visit dealers of all brands in the market before conducting a purchase. The

survey data also rejects this argument because, although some respondents visited as many as 12

dealers before having bought their car, not a single consumer visited a dealer of each of the 38

brands in the market.

4Possible explanations for purchases occurring without any dealer visit are online car purchases, parallel imports,
and company car leases. A relatively large proportion of the non-visits are (company) car leases—although only
18 percent of new car purchases in the survey data are company car leases, they represent over 25 percent of the
non-visits. Buying a new car online is only possible in the Netherlands since 2006, when the online car dealer
nieuweautokopen.nl started operating.
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The survey data also serves to rule out an imperfect information model in which the sole purpose

of the visits is to compare prices. If the only reason for visiting dealers were price shopping, no

test drive would have been observed in the market. The survey gives some information on what

consumers do while visiting car dealers. In 45 percent of the dealer visits a test drive was involved.

Moreover, among those who visited one or more dealers to shop for a new car, over 75 percent made

at least one test drive at one of the visited dealerships. If price were the only relevant characteristic

that consumers search for in this market, we would not observe this many test drives being made.

Because, arguably, test drives are done to learn car characteristics (including whether the car is a

good fit) that can hardly be learnt otherwise, the survey data is consistent with a search model

in which the main reason for visiting car dealers is to learn more about the product and not just

about its price.

Besides information on dealer visits, the survey data contains demographic information such as

zip code, household income, family size, and household composition. To obtain a better insight into

what explains the differences in search behavior across the respondents, we run several regressions.

We first use the information on dealer visits from the survey to investigate what determines the

number of dealer visits. Column (A) of Table 1 gives the results of an ordered probit regression

in which we explain the number of dealer visits by the log of household income, a dummy for

whether there are kids living in the household, a dummy for whether the partner of the head of

household is 65 years or older, and a dummy for whether the respondent purchased a new car.

In addition we include year fixed effects as well as fixed effects for the make that was ultimately

bought. As shown in the table, the log income coefficient is positive and highly significant. Even

though this suggests that higher income leads to more search, this does not necessarily mean that

higher income respondents have lower search costs because more wealthy consumers also tend to

buy more expensive cars and the benefits from search may be higher for this type of cars. Although

only significant at the ten percent level, having children in the household reduces the number of

searches, while being older increases the number of searches. The new car dummy indicates that

people visit more dealers when buying a new car than when buying a used car, which may reflect

the fact that it is less common to buy a used car at a car dealer than it is when buying a new car.

In specification (B) we focus on new car purchases only. Although this does not change the income

coefficient much, the effect of children in the household is now twice as large, whereas the senior

dummy is no longer significantly different from zero.

To see how the physical distance from a respondent to a dealer location affects decisions on

whether or not to visit a dealer, in specifications (C) and (D) we regress an indicator for whether
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Table 1: Dealer visits

Number of dealer visits Probability of dealer visit
(A) (B) (C) (D)

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

log(income) 0.215 (0.067)∗∗∗ 0.203 (0.099)∗∗ 0.085 (0.024)∗∗∗ 0.067 (0.032)∗∗

kids -0.154 (0.083)∗ -0.303 (0.140)∗∗ -0.081 (0.031)∗∗∗ -0.115 (0.048)∗∗

senior 0.185 (0.093)∗∗ 0.079 (0.125) 0.082 (0.033)∗∗ 0.043 (0.042)
new car 0.602 (0.074)∗∗∗ 0.246 (0.027)∗∗∗

distance -0.070 (0.020)∗∗∗ -0.079 (0.028)∗∗∗

Pseudo R2 0.052 0.041 0.102 0.098
# obs 1,013 442 35,385 15,028

Notes: ∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%. Data is for 2003-2008. All specifications
include year and make dummies. Specifications (B) and (D) use data for new car purchases only.

a dealer is visited by a respondent on the same set of covariates as before, as well as the Euclidian

distance between the centroid of the zip code where the respondent resides and the nearest dealer of

each of the car brands in our data. Specification (C) takes all car purchases into account, whereas

in specification (D) we only focus on new car purchases. The effects of income, kids, and senior

are similar to the results for the ordered probit regressions: income is positively related to a dealer

visit, children negatively, and senior positively, although the effect for the latter disappears when

we condition on new car purchases. In both specifications distance has a negative impact on the

probability of visiting a dealer and is highly significant.

We interpret these results as suggesting that distance from the consumer to a car dealer is

related to search frictions. This interpretation is consistent with the fact that, according to the

survey, 41 percent of new car buyers responded that distance was a factor they took into account

when determining which dealers to visit. That distance matters is also reported in related work.

Albuquerque and Bronnenberg (2012), using individual car transaction data in the San Diego

metropolitan area between 2004 and 2006, find that consumers have a strong disutility for travel

when buying a car. Similarly, Nurski and Verboven (2013) find that dealer proximity is an important

determinant of demand for automobiles in Belgium. While these papers interpret distance as

a transportation cost parameter that directly lowers utility, we treat it also as a variable that

increases the cost of searching cars and creates limited and heterogeneous information.

The above findings suggest search frictions play a role in the car market. Not only is there

substantial heterogeneity across respondents in how many dealers they visit, but also consumers

tend to visit car dealers to learn more about the characteristics of the cars they sell instead of just

for making a purchase or obtaining price information. Moreover, demographics such as income and
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location seem to play a role in the decision which dealers to visit. These observations lead us to

formulate our search model in the next section. Specifically, we develop a discrete choice model with

optimal consumer search, in which consumers search for a good fit and in which we relate search

costs to consumer demographics including the distance to the nearest car dealer of each brand.

Although the model can be estimated using aggregate data only, we estimate it supplemented with

some micro moments from the survey data in order to aid identification.

3 Economic Model

3.1 Utility and demand

We consider a market where there are J different cars (indexed j = 1, 2, . . . , J) sold by F different

firms (indexed f = 1, 2, . . . , F ). We shall denote the set of cars by J and the set of firms by F .

The utility consumer i derives from car j is given by:

uij = αipj + x′j (β + Viσ) + ξj + εij , (1)

where αi is a consumer-specific price coefficient, the variable pj denotes the price of car j and the

vector (xj , ξj , εij) describes different product attributes from which the consumer derives utility.

We assume xj and ξj are product attributes the consumer observes without searching, like horse-

power, weight, transmission type, ABS, air-conditioning, number of gears, etc. Information on car

characteristics and dealership locations can easily be retrieved from for instance advertisements,

the Internet, specialized magazines, and consumer reports. The variable εij , which is assumed to

be independently and identically type I extreme value distributed across consumers and products,

is a match parameter and measures the “fit” between consumer i and product j. We assume that

εij captures “search-like” product attributes, that is, characteristics that can only be ascertained

upon visiting the dealership, inspecting, and possibly test driving the car, like comfortability, spa-

ciousness, engine noisiness, and gearbox smoothness. It is assumed that the econometrician also

observes the product attributes contained in xj but cannot observe those in ξj and εij . Consumers

differ in the way they value price and product characteristics. The parameter αi and the expression

(β + Viσ) capture consumer heterogeneity in tastes for price and product attributes. Here Vi is a

diagonal matrix that contains either demographic characteristics or standard normal draws on its

main diagonal such that the first component corresponds to the first component of xj , the second
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to the second component of xj , and so on. We let αi relate to income in the following way:

αi =


α(1)

yi
for yi < y;

α(2)

yi
for yi ≥ y,

(2)

where α(1) and α(2) are deterministic parameters, yi is the yearly income of consumer i, and y is a

chosen income bound.

The utility from not buying any of the cars is

ui0 = εi0.

Therefore, we regard product j = 0 as the “outside” option; this includes the utility derived from a

non-purchase, or the purchase of a used car. We allow for multi-product firms: firm f ∈ F supplies

a subset Gf ⊂ J of all products. In the car industry dealers typically sell disjoint sets of cars, so

Gf ∩ Gg = ∅ for any f 6= g, f, g ∈ F .

We assume consumers must search to find out the exact utility they derive from each of the

cars available as well as the utility of the outside option. To be more specific, we assume that

before searching consumers know (i) the location of each car dealership and the subset of makes

and models available at each dealership, (ii) car characteristics pj , xj and ξj for each car j, and

(iii) the distribution of match values εij . Therefore, we regard the process of search of a consumer

i as a process by which she discovers the exact values of the matching parameter εij upon visiting

dealership j.5

Consumers are assumed to use a non-sequential search strategy, i.e., they choose which subset

of dealers to visit in order to maximize their expected utility; once they have visited the chosen

dealers and have learned all the attributes of the cars they are interested in, they decide whether to

buy any of the inspected cars or else opt for the outside option. An advantage of a non-sequential

search rule is that it allows the searcher to collect information quickly. Although the optimal

search strategy often has non-sequential and sequential elements (Morgan and Manning, 1985), a

few institutional details of the market for new cars in the Netherlands help justify the non-sequential

search assumption. For instance, in this market consumers often need to make appointments with

car dealers in order to test-drive their most preferred cars. One motivation for this is simply that the

seller, wishing to offer the best possible service, likes to plan test drives such that unnecessary and

5In general, one can distinguish between store search and brand search. In our model consumers search among
different brands. The difference with store search is that the same brand may be sold by several stores, which is not
the case in the Dutch car market.
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unpleasant waiting time for his customers is minimized. Moreover, because of space limitations and

the associated costs of having cars ready to test-drive, the typical dealer does not have showroom

vehicles available for all models at all times. In those cases, test drives need be planned with

sufficiently advanced notice. Consumers thus save costs by planning various test drives on the

same day, often the single day of the week in which opening hours extend to 9pm as well as

Saturdays.

Solving for a consumer’s optimal search strategy is difficult. As mentioned in the Introduction,

our search problem is related to the general class of search problems discussed in Chade and Smith

(2006). In these problems a decision maker must simultaneously choose among a set of ranked

stochastic options; each choice is costly and only the best realized option is exercised. When there

are many alternatives available in the market, as is the case in our empirical analysis, finding the

optimal choice set is extremely complex because there are many choice sets to be evaluated. Chade

and Smith (2006) provide a procedure, known as the Marginal Improvement Algorithm (MIA),

that finds the solution under some assumptions. In our model, unfortunately, we cannot apply

the MIA algorithm. One reason is that the firms in our application sell different numbers of cars

and this implies that the various dealer utility distributions cannot a priori be ranked according

to the first- or second-order stochastic dominance criterion.6 Another problem is that, as we have

shown in the previous section, an important part of the cost of visiting dealers is the distance

from the consumer’s home to the different car dealerships. Because not all dealers locate in the

same place, the costs of searching cars for a given consumer are brand-specific, which according to

Chade and Smith (2006), invalidates the MIA procedure. In order to solve this problem, we add

a choice-set specific random term to the costs of searching subsets of dealers that is unobservable

to the econometrician. The idea is analogous to the idea of adding an error term to the utility in

discrete-choice models. By doing this, we are able to readily compute the probability with which

any given subset of dealers is searched by a consumer.

Specifically, we model search costs as follows. Let S be the set of all subsets of dealers in F and

let S be an element of S. We shall denote consumer i’s search cost for visiting all the dealerships in

S by ciS . Besides distances we include other variables that potentially capture variation in search

costs. One such variable is |S| (i.e., the number of dealers in S) multiplied by log income, which

may potentially serve as a proxy for the opportunity cost of time. Other demographic information

6The problem is how to compare dealer utility distributions with different means and variances. See also the
discussion in Honka (2014).
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can be included as well. An example of a search cost specification for consumer i is

ciS = γ1

∑
f∈S

dif + γ2 |S| log yi + γ3 |S| kidsi + λiS ,

where dif denotes the distance between consumer i and dealer f , yi is consumer i’s income, kidsi

is an indicator for whether there are children living in the household of consumer i, and λiS is a

consumer-specific search cost shock for visiting a set of dealers S.7

We interpret this search cost shock as capturing choice-set specific variation in search costs

which we are unable to control for, such as time of the day or day of the week the search occurred,

or variation in travel patterns. For instance, we are unable to control for traffic congestion, even

though this may affect search costs. Similarly, during the weekend consumers may value time

differently than during a weekday, which may lead to variation in choice-set specific search costs

that is not captured by our controls.

This choice-set specific error is observed by consumers before searching, but not by the re-

searcher. We shall assume that shocks λiS are such that (−λiS) are i.i.d. type I extreme value

distributed across consumers and subsets of dealers. This distributional assumption along with the

search cost errors being choice-set specific provides us with a very convenient way to compute the

outcome of the optimal search behavior of a consumer.

Regarding this distributional assumption, we note that because the matching term εij in the

utility also follows a double exponential distribution we are making a double normalization. This is

not necessary. We make this assumption because, as we will show later, it allows us to integrate out

the choice-set probabilities and obtain a closed-form solution for the probability a car is bought by

a given consumer. This closed-form solution allows for a direct comparison to the full information

model of BLP, and it is extremely helpful in the estimation phase. Nonetheless, we have exper-

imented with the case in which the scale parameter of the distribution of the choice-set specific

errors is not normalized to 1. In such a case, we can no longer compute the choice probabilities in

closed form and need to use importance sampling methods to estimate them.8

7The assumption that the error term is choice-set specific is very convenient because it allows us to compute the
choice-set probabilities in closed form no matter the number of available options. When the number of options is
small, this is not needed. We compared numerically the case where the λ’s are choice-set specific to the case in
which they are dealer specific instead. The implied choice probabilities were not very different and the latter case
was computationally far more demanding. Details on this comparison are available from the authors upon request.

8 In Appendix E we discuss how to estimate the model using importance sampling. We have used this method
for robustness purposes and found that our qualitative results do not change for other values of the scale parameter.
In particular, for the conditional logit case most utility and search cost parameters are not affected by the scale
parameter being different from 1 and, correspondingly, the estimated elasticities are very similar. We note however
that the model is computationally much more difficult to estimate. We have also tried to estimate the conditional
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To simplify the formulas of the choice probabilities, it is convenient to assume consumers always

include the outside good in their choice set. Of course, consumers are allowed to pick a choice set

that only includes the outside good, i.e., S = ∅, for a cost ci∅ = λi∅.9

For simplicity of notation let

ciS = t′iSγ + λiS ,

where

t′iS =

∑
f∈S

dif , |S| log yi, |S| kidsi


and γ = (γ1, γ2, γ3)′.

3.2 Optimal non-sequential search

A consumer i first decides which subset of dealers to visit; then, upon visiting the dealers and

inspecting and test-driving the cars that are sold at those dealers, she makes a purchase decision.

In order to decide which (subset of) dealers to visit, consumer i must compare the expected gains

from searching all the possible subsets of dealers. The expected gains to consumer i from searching

the dealerships in a subset S are

E

[
max

j∈Gf∪{0}, f∈S
{uij}

]
− ciS ,

where E denotes the expectation operator, taken in this case over the search characteristics εij ’s.

We now define

miS = E

[
max

j∈Gf∪{0}, f∈S
{uij}

]
− t′iSγ.

Letting F denote the CDF of εij , the random variable

max
j∈Gf∪{0}, f∈S

{uij}

logit model with a free scale parameter. The problem we have encountered is that for certain values of the scale
parameter the contraction mapping property is violated, so the nested fixed point algorithm breaks down. Extending
the model to accommodate micro data appears to make the contraction mapping problem more serious. Currently
we are studying algorithms that are able to invert the demand system without the contraction mapping property.
Although our results are still very preliminary, we intend to report them as part of future work.

9An interpretation of this assumption is that if a consumer i does not search then she does not know εi0; if this
consumer searches some firms then she gets to know εi0 at no additional cost.
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has a CDF given by
∏

j∈Gf∪{0}, f∈S
F (u− δij), where δij is the mean utility consumer i derives from

alternative j, i.e., δij = αipj + x′jβi + ξj . Using this, we obtain

miS = log

1 +
∑
f∈S

exp[δif ]

− t′iSγ, (3)

where δif = log
(∑

j∈Gf exp[δij ]
)

.10

Since we normalize the mean utility of the outside option to zero, i.e., δi0 = 0, the expected

maximum utility of not searching is 0. In our model a consumer can opt for the outside option in

two different ways: immediately by deciding not to search at all (i.e., by choosing the empty choice

set S = ∅) or by choosing to visit a number of sellers and deciding to not buy any of the products

after inspecting them. In our application in any given year around 93 percent of households do not

buy a new car and therefore choose the outside option. Although this group includes consumers

who search but do not find a satisfactory option, the vast majority will choose the outside option

right away because they are not in the market for a new car that year. To make the model flexible

enough that it can accommodate the tradeoffs that both groups of non-buyers face, we allow the

value of the outside option when not searching to be different from the outside option after having

searched. We do so by letting the expected gains to consumer i from not searching depend on an

additional parameter ρ.11 The expected gains from not searching are then

mi∅ = E

[
max
j∈{0}

{uij}
]

+ ρ− t′i∅γ

= ρ,

10Note that

E

[
max

j∈Gf∪{0}, f∈S
{uij}

]
=

∫ ∞
−∞

u
d

du

 ∏
j∈Gf∪{0}, f∈S

F (u− δij)

 du;

=

∫
u
d

du

 ∏
j∈Gf∪{0}, f∈S

exp [− exp [−(u− δij)]]

 du;

= c+ log

1 +
∑

j∈Gf , f∈S

exp[δij ]

 ,

where c is the Euler constant. So

miS = c+ log

1 +
∑

j∈Gf , f∈S

exp[δij ]

− t′iSγ.
In the expression in equation (3) we omit c because it does not affect choices.

11Only the difference in expected utility between searching and not searching is identified, which means that the
parameter ρ can also be interpreted as a fixed search cost.
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where, as in equation (3), we have omitted the Euler constant because it does not affect choices.

Consumer i will pick the subset Si that maximizes the expected gain miS − λiS , i.e.,

Si = arg max
S∈S

[miS − λiS ];

= arg max
S∈S

log

1 +
∑
f∈S

exp[δif ]

− t′iSγ − λiS
 .

Since we assume (−λiS) is i.i.d. type I extreme value distributed, the probability that consumer i

finds it optimal to sample the set of dealers Si is PiSi , where

PiS =
exp[miS ]∑

S′∈S exp[miS′ ]
. (4)

Given that consumer i searches the set Si, the probability that she buys product j is equal to

the probability that product j provides the highest utility out of the products of the firms in Si.

Denoting this probability by Pij|Si , we have

Pij|S =
exp[δij ]

1 +
∑

r∈S exp[δir]
.

In order to obtain the unconditional probability sij that consumer i purchases product j, we

need to “integrate out” Si from this probability, i.e.,

sij =
∑
S∈Sf

PiSPij|S

=
∑
S∈Sf

exp[miS ]∑
S′∈S exp[miS′ ]

exp[δij ]

1 +
∑

r∈S exp[δir]
,

where f denotes the firm producing j and Sf is the set of all choice sets containing firm f . In

Appendix A we show this probability can be written as

sij =
exp

[
δij − ln

(
1 + exp

[
t′i{f}γ

])]
1− φ
φΠiF

+ 1 +
J∑
k=1

exp
[
δik − ln

(
1 + exp

[
t′i{g}γ

])] , (5)

where ti{f} contains the search cost of firm f only, φ = exp [−ρ], and ΠiF =
∏
g∈F

(
1 + exp

[
−t′i{g}γ

])
.

This equation suggests that our search model nests the full information model of BLP. In fact, we

get the full information choice probability when γ → −∞ (because the support of the search cost
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distribution is (−∞,∞)); in such a case, exp
[
t′ifγ

]
→ 0, ΠiF →∞ and we obtain

sfij =
exp [δij ]

1 +
J∑
k=1

exp [δik]

.

Equation (4) can also be used to calculate the probability consumer i searches k times for low

values of k = 1, 2, 3, . . . , F , which is useful for constructing search-related micro moments. Let

Mi =
∑

S′∈S exp[miS′ ], the denominator of PiS in equation (4). As shown in Appendix A, this can

be simplified to

Mi = ΠiF

(
1− φ
φΠiF

+ 1 +
J∑
k=1

exp[δik]

1 + exp[t′i{g}γ]

)
.

Consumer i’s probability of not searching is then pi0 = exp [mi∅] /Mi = exp [ρ] /Mi, whereas the

probability of searching once is pi1 =
∑

f∈F exp
[
mi{f}

]
/Mi, where mi{f} is given by equation (3)

for the singleton subset that only contains firm f . Similarly, the probability of searching two firms

is pi2 =
∑F−1

f=1

∑F
g=f+1 exp

[
mi{f,g}

]
/Mi.

Let τi be the vector of all consumer-specific random variables in sij , that is, parameters and

demographic characteristics. Then the probability that product j is purchased is the integral

sj =

∫
sijdFτ (τi), (6)

where Fτ is the CDF of τi. Such an integral is difficult to compute analytically but it can be

estimated by Monte Carlo simulations by drawing the demographic characteristics and random

coefficients of, say, N consumers, and then computing sij for each consumer i = 1, . . . , N . The

Monte Carlo estimator of sj is then taken as the sample mean ŝj = 1
N

∑N
i=1 sij .

3.3 Supply side

We include the supply side in order to obtain estimates of price-cost markups. We assume each

firm f ∈ {1, . . . , F} supplies a subset Gf of the J products. LetM denote the number of consumers

and let mcj denote the marginal cost of producing product j. Then the profit of firm f is given by

Πf (p) =
∑
j∈Gf

(pj −mcj)Msj(p).
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Following BLP we assume mcj depends log-linearly on observed product characteristics affecting

cost, wj , and an unobserved cost characteristic ωj :

ln(mcj) = w′jη + ωj . (7)

We expect the unobserved cost characteristics ωj to be correlated with the unobserved demand

characteristics ξj . For instance, if the researcher does not observe whether a car has a navigation

system as standard equipment, then cars having this characteristic will have a higher unobserved

demand characteristics and, because it is more costly for the firm to include a navigation system, a

higher unobserved cost characteristics as well. We will account for this correlation in the estimation

procedure.

We assume firms maximize their profits by setting prices, taking into account prices and at-

tributes of competing products as well as the locations of all dealers.12 Let p denote the vector of

Nash equilibrium prices. Assuming a pure strategy equilibrium exists for this game, any product j

should have a price that satisfies the first order condition

sj(p) +
∑
r∈Gf

(pr −mcr)
∂sr(p)

∂pj
= 0.

To obtain the price-cost markups for each product we can rewrite the first order conditions as

p−mc = ∆(p)−1s(p), (8)

where the element of ∆(p) in row j column r is denoted by ∆jr and

∆jr =


−∂sr
∂pj

, if r and j are produced by the same firm;

0, otherwise.

For the derivation of the partial derivatives of the market shares with respect to price it matters

whether consumers observe deviation prices before or after search. In our context, because con-

sumers can easily observe list prices while being at home, we adopt the assumption that consumers

observe (deviation) prices before they start searching. Notice that this assumption differs from

most of the literature on consumer search for differentiated products (Wolinsky, 1986; Anderson

and Renault, 1999) and, as demonstrated in recent work (see, e.g., Armstrong and Zhou, 2011; Haan

12Although we do not model optimal dealer locations, we do not regard it as exogenous because we do not use
distances as instruments.
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and Moraga-González, 2011), this assumption has implications for the behavior of prices and search

costs.13

4 Estimation and identification

Our estimation procedure closely resembles BLP, except that we allow for an endogenous choice-

set selection stage which is the outcome of an optimal consumer search problem. As shown by

BLP, the parameters of the demand and supply model without search frictions can be estimated

by generalized method of moments (GMM). Their GMM procedure accounts for price endogeneity

by solving for the unobservables ξj and ωj in terms of the observed variables and taking these as

the econometric error term of the model. As in BLP, we can compute the vector ξ = (ξ1, . . . , ξJ) of

unobserved characteristics as the unique fixed point of a contraction mapping. The fact that this

mapping is indeed a contraction follows from the fact that the first order derivatives of the market

shares with respect to the unobserved characteristics have the same form as in BLP (see Appendix

B for more details). In this section we provide a method to estimate the search model by GMM as

well.

4.1 Moments

We consider macro- and micro moments. For the macro moments, following BLP, the predicted

market share sj(θ) of product j should match observed market shares ŝj , or

sj(δ(θ), θ)− ŝj = 0.

We use the contraction mapping mentioned in the previous paragraph to solve for δ(θ). The first

moment unobservable follows from δ(θ) and is

ξj = δj(θ)− xjβ. (9)

13In a standard search model a firm chooses its price to maximize the payoff from the consumers who visit. By
changing the price a firm thus affects the selling probability, but not the visiting probability. In contrast, when prices
are observed from home, changing the price affects both the visiting and the buying probability in our model. While
in most standard models prices increase in search costs, in models where prices are observable before search, prices
can be decreasing in search costs (Haan and Moraga-González, 2011). We will return to this point later in the paper
when we study the equilibrium effects of changing search costs.
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The second moment unobservable follows from the parametric marginal cost specification and the

first order conditions—combining equations (7) and (8) and solving for ωj gives

ωj = ln
(
p−∆−1s(θ)

)
− w′jη. (10)

Since we have individual-level data, we are able to construct micro moments as well. The survey

data provides for each respondent information on their latest car purchase as well as their search

behavior related to that car purchase. We supplement the BLP moments with micro moments

that are based on these survey responses as well as corresponding model predictions—following

Petrin (2002) we let the GMM estimation routine select the parameters of the model such that

the predicted probabilities match the observed probabilities in the survey data. We discuss some

specific examples of micro moments in Section 5. For computational details we refer to Appendix

C.

4.2 GMM estimation

We use GMM to estimate the model. The original estimation relies on the assumption that the

true values of the demand and cost unobservables are mean independent of observed product

characteristics, that is,

E[(ξj , ωj)|(X,W )] = 0.

Let Z be a matrix of instruments with 2J rows and let ψ(θ) = (ξ1(θ), . . . , ξJ(θ), ω1(θ), . . . , ωJ(θ))′.

Let the sample moments be

gJ (θ) =
1

2J
Z ′ψ (θ) . (11)

Denote the column vector of micro moments by gN (θ); let

g(θ) =

 gJ(θ)

gN (θ)


be the column-vector of both macro- and micro moments.

The GMM estimator of θ is

θ̂ = arg min
θ
g (θ)′ Ξg (θ) ,

where Ξ is a weighting matrix; see Appendix D for various alternatives for this. Some parameters

enter linearly in the model, so we can concentrate them out of the above GMM minimization. By
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using equations (9) and (10) and denoting

X1 =

 x 0

0 w

 and δ (θ2) =

 δD (θ2)

δC (θ2)


we get

ψ (θ) = δ (θ2)−X1θ1.

By assuming θ2 known we can obtain θ1 as the linear IV estimator

θ̂1 =
(
X ′1ZΞZ ′X1

)−1
X ′1ZΞZ ′δ (θ2) ,

and substituting this in gJ (θ) we obtain a new sample moment, which is a function of θ2 only

gJ (θ2) =
1

J
Z ′ψ (θ2) , where ψ (θ2) = δ (θ2)−X1

(
X ′1ZΞZ ′X1

)−1
X ′1ZΞZ ′δ (θ2) .

Note that by using δD (θ2) in sij (θ), the micro moment (see equation (A16) in the Appendix) does

not depend on θ1; denote by gN (θ2) the vector of micro moments that are the same as gN (θ) but

formally depend on δD (θ2) instead of ξ and θ1. Also, let

g (θ) =

 gJ (θ)

gN (θ)

 .

The GMM estimator of θ2 based on this is

θ̂2 = arg min
θ2

g (θ2)′ Ξg (θ2) .

4.3 Identification

In this section we provide an informal discussion on identification. In our model, variation in

the sales across brands is due to (i) variation in the characteristics of cars, (ii) variation in the

unobserved consumer characteristics, which also include demographic characteristics like income,

number of children, and distances from the households to the closest dealers of the brands, and (iii)

variation in the observed demographic characteristics and choices by the consumers in the survey.

We are interested in the identification of the parameters in the utility function, which are α, β and

σ, the marginal cost parameter vector η, the search cost parameter vector γ and the gains from

not searching ρ.
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Usually the α and β parameters of the utility function can be identified because the econome-

trician observes different market shares corresponding to different product characteristics. Further,

the σ parameter vector that is responsible for unobserved consumer heterogeneity can be identi-

fied due to the fact that certain types of consumers prefer cars with certain characteristics. In our

model, since we can control for the distances from the households to the dealerships, the parameters

β and σ can be identified in the same way. Although these parameters are identified from aggregate

data, the observed consumer-level characteristics, choices, and choice sets aid their identification,

as shown by Petrin (2002). The marginal cost parameter vector η is identified from variation in

prices and market shares with respect to the observed marginal cost variables.

The set of instruments we use to control for possible correlation between unobserved charac-

teristics and price as well as unobserved characteristics and distances are similar to those used by

BLP. That is, in addition to product characteristics, which are exogenous by assumption, we add

the number of cars and the sum of characteristics of the cars produced by the same firm, as well

as the number of competing cars and the sum of characteristics of all competing cars. It is known

from Armstrong (2014) that in large markets like the car market, the instruments constructed in

this way are weak and may not identify the price coefficients; BLP deal with this problem by using

sales data from 20 years. Since in addition to aggregate sales data from 6 years we use consumer-

level choice and choice-set data, the weak instruments problem is solved because at the level of

consumers prices can be regarded as exogenous, so they need not be instrumented in the micro

moments. This is because in the micro moments we can treat the unobserved characteristics as

observed by the econometrician since they can be computed from the market shares.

The parameter vector γ, which appears in our formulation of search costs, can be identified

from aggregate data due to nonlinearities (see equation (5)). The variables involved in the search

cost specification are distance, income, and “kids,” that is, a dummy variable indicating whether

there are children in the household. In our most complete model (see specification (B) in Table

5) these variables also appear in the utility either directly (distance) or in combination with other

variables (income and “kids”). Again, consumer-level data reinforces the identification of γ. For

example, as it can be seen from the survey probabilities in Table 6, the probability of buying a

new car for high income consumers (i.e., yi ≥ y) is roughly the double of the same probability for

low income consumers (0.105 versus 0.053). At the same time, among the low income consumers

there are more who search at least twice than those who buy (0.061 versus 0.053), while among the

high income consumers there are fewer who search at least twice than those who buy (0.096 versus

0.105). This means that income affects search costs negatively.
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Finally, the gains from not searching ρ can be identified from aggregate data due to its nonlinear

connection to the constant in the utility (see equation (5)). Consumer-level data provides additional

information on ρ because the probability of not searching pi0 (see end of Section 3.2) is strictly

increasing in ρ and in the survey we observe the proportion of consumers who do not search.14

5 Data and Results

5.1 Data

Our data set consists of prices, sales, physical characteristics, and locations of dealers of virtually

all cars sold in the Netherlands between 2003 and 2008. We include a model in a given year if more

than fifty cars have been sold during that year; this means “exotic” car brands like Rolls-Royce,

Bentley, Ferrari, and Maserati are excluded. This leaves us with a total of 320 different models

that were sold during this period—in any given year about 230 different models. We treat each

model-year combination as one observation, which results in a total of 1,382 observations.

The data on product characteristics are obtained from Autoweek Carbase, which is an online

database of prices and specifications of all cars sold in the Netherlands from the early eighties

until now.15 Characteristics include horsepower, number of cylinders, maximum speed, fuel ef-

ficiency, weight, size, and dummy variables for whether the car’s standard equipment includes

air-conditioning, power steering, cruise control, and a board computer. Unfortunately transaction

prices are not available, so all prices are listed (post-tax) prices.16 We have used the Consumer

Price Index to normalize all prices to 2006 euros.

We have supplemented the data set with several macroeconomic variables, including the number

of households and average gasoline prices, as reported by Statistics Netherlands. The total number

of households allows us to construct market shares (calculated as sales divided by the number of

14Note that

pi0 =
1

φΠiF

(
1−φ
φΠiF

+ 1 +
∑J
k=1

exp[δik]
1+exp[t′

i{g}γ]

) =
1

1 + φ

[
ΠiF

(
1 +

∑J
k=1

exp[δik]
1+exp[t′

i{g}γ]

)
− 1

] ,
which is decreasing in φ because the expression in the square brackets is positive. Therefore, pi0 is strictly increasing
in ρ.

15See http://www.autoweek.nl/carbase.
16The tax when buying a new car in the Netherlands consists of a sales tax as well as an additional automobile tax.

The sales tax (BTW) in the period 2003-2008 was 19 percent. The automobile tax (BPM) was 45.2 percent of the
pre-tax price during most of the sampling period, but was lowered to 42.3 percent in February 2008. The automobile
tax paid also depends on whether the car uses diesel or gasoline (gasoline users deduct e1,540 from the pre-tax price
of a car before applying the automobile tax (e1,442 during most 2008), while diesel users add e328 (e308 in 2008)).
Moreover, from July 2006 on there are additional additions or deductions to the pre-tax price that are based on the
energy efficiency of the car and whether the car is a hybrid or not.
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households), while average gasoline prices are used to construct our kilometers per euro (KMe)

variable, which is calculated as kilometers per liter (KPL) divided by the price of gasoline per liter.

We define a firm as all brands owned by the same company. We use information on the ownership

structures from 2007 to determine which car brands are part of the same parent company—the 40

different brands in our sample are owned by 17 different companies. For instance, in 2007 Ford

Motor Company owned Ford, Jaguar, Land Rover, Mazda, and Volvo.

Table 2: Summary statistics

No. of HP/ Cruise Family MPV or
Year Models Sales Price European Weight Size Control KPL KPe Car SUV

2003 213 481,913 19,562 0.762 0.787 7.153 0.229 14.480 12.497 0.426 0.216
2004 228 476,581 19,950 0.749 0.788 7.184 0.308 14.696 11.737 0.408 0.235
2005 233 457,897 20,540 0.727 0.794 7.270 0.301 14.861 10.987 0.403 0.242
2006 231 475,636 20,367 0.715 0.804 7.271 0.308 15.120 10.707 0.361 0.234
2007 236 495,091 20,509 0.712 0.810 7.330 0.281 15.112 10.356 0.363 0.240
2008 241 489,584 18,613 0.714 0.813 7.271 0.293 15.813 10.290 0.381 0.188
All 1,382 479,450 19,916 0.730 0.799 7.247 0.286 15.018 11.091 0.390 0.226

Notes: Prices are in 2006 euros. All variables are sales weighted means, except for the number of models and sales.

Table 2 gives the sales weighted means for the main variables we use in our analysis. The number

of models has increased from 213 in 2003 to 241 in 2008. Sales were lowest in 2005 and peaked in

2007. Prices have been going up mostly in real terms, although 2008 saw a sharp decrease, possibly

as a result of the onset of a recession. The share of European cars sold shows a downward trend,

mainly to the benefit of cars that originate from East Asia. The ratio of horsepower to weight has

been increasing steadily. The share of cars with cruise control as standard equipment increased in

the first half of the sampling period, but then decreased somewhat. Cars have become more fuel

efficient during the sampling period. Nevertheless, as shown in the KPe column of Table 2, fuel

efficiency has not increased enough to offset rising gasoline prices—the number of kilometers that

can be traveled for one euro has decreased over the sample period. The share of family cars has

steadily declined over time, while cars that are classified as either multi-purpose vehicle (MPV) or

sport utility vehicle (SUV) saw their market shares increase until 2007, followed by a sharp drop

in 2008. During this period the share of cars classified as supermini went up from 32 percent to

over 40 percent of the market.17

17The classification we use is based on the Euro NCAP Class vehicle classification. The largest class in terms of
sales-weighted market share in the period 2003-2008 is the supermini class with a market share of 0.347, followed by
the small family car class (0.214), the large family car class (0.176), and the small MPV class (0.148). In our analysis
we combine the small and large family car classes into a single family car class (combined sales-weighted market share
of 0.390 during 2003-2008), and combine the small and large MPV classes, as well as the small and large off-road 4x4
classes into a single MPV/SUV class (combined market share of 0.226). The combined market share of cars in other
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In addition to car characteristics we use information on the location of car dealerships and

combine this with geographic data on where people reside to construct a matrix of distances between

households and the different car dealerships. These distances are later used to proxy the cost of

visiting a dealership to learn all product characteristics of a vehicle. We also use data on the

distribution of household characteristics as search cost covariates.

Our demographic and socioeconomic data on households are obtained from Statistics Nether-

lands. These data are available at various levels of regional disaggregation (neighborhoods, districts,

city councils, counties, provinces, etc.). Since the purpose of our study is to estimate the impor-

tance of search costs, we choose to work at the highest level of regional disaggregation, that is, at

the neighborhood level. This permits us to proxy the costs of traveling to the different car dealers

rather accurately. Statistics Netherlands provides a considerable amount of useful demographic

and socioeconomic data at this level of disaggregation.

For every neighborhood, the demographic data include the number of inhabitants and their

distribution by age groups, the number of households, the average household size, the proportion

of single-person households, and the proportion of households with children. The socioeconomic

data include the average home value, the average income per inhabitant and income earner, as well

as the total number of cars and their ownership status (company leased versus privately owned).

We only include neighborhoods with a strictly positive number of inhabitants, which leaves us with

a total of 11,122 neighborhoods for 2007.18 Most neighborhoods are relatively small; the mean

number of inhabitants is 1,471.

In addition to demographic data we have information on the exact location of each neighborhood

on the map of the Netherlands. Using a geographical software package we use this information to

construct a proxy for the distance that needs to be travelled when visiting a car dealership. To

be able to do this, for every brand we have first obtained the addresses of all its dealerships in

the Netherlands. For instance, Saab has a total of twenty dealers in the Netherlands, which are

spread over the country as shown in Figure 2(a). Since we have the exact addresses of the twenty

dealerships of Saab, for every neighborhood, we can compute the Euclidean distance from the center

of the neighborhood to the closest Saab dealer. We do this for all car manufacturers and obtain a

matrix of 11,122 by 38 containing the minimum distances from the center of a neighborhood to a

car dealer.

classes (executive, luxury, sports cars, and vans) is 0.037.
18There are 284 neighborhoods for which the number of inhabitants is zero. These are neighborhoods that tend

to be located in industrial areas, ports, and remote rural areas. There are a few neighborhoods for which we miss
some of the relevant variables. To complete the data set we proceed by using information obtained at lower levels of
disaggregation (districts or city councils).
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(a) Saab dealerships (b) Volvo dealerships

Figure 2: Locations selected dealers

There is a lot of variation in the distances to the closest dealer of each brand across neighbor-

hoods. Figure 2(b) gives the spread of Volvo dealerships across the country—clearly on average the

minimum distance to a Volvo dealer is much smaller than the minimum distance to a Saab dealer.

A similar picture arises for other brands. For instance, Audi has 161 dealers, whereas BMW has

only 20, even though both brands are active in the luxury segment of the market and both have

similar sales figures. Table 3 gives some descriptive statistics for the distances to the nearest dealer

for all the car brands in our data. Opel is the most accessible: almost 79% of all households live

within 5 kilometer from an Opel dealer. Porsche has the lowest percentage of households within 5

kilometer: only 6.3% of households is within easy reach.

Since car dealers may be located in areas where there is most demand for the cars they are

selling, the location of car dealers may be endogenous to the model; this, if not properly dealt

with, may result in biased estimates of the distance coefficient. For instance, if dealers of luxury

brands are located near wealthy neighborhoods, while mainstream brands are not, then the effect

of distance may seem more important than it is. In order to explore whether this is an issue in

our data, in the last two columns of Table 3 we compute the weighted average distances to the

dealers for the top ten percent of neighborhoods in terms of average income. The table indicates

that the weighted average distances to dealers of luxury brands such as Audi, BMW, Mercedes,
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Table 3: Descriptive statistics for distances

All neighborhoods Top income decile
Number of Weighted Percentage of Weighted Percentage of

Number of cars sold average households average households
Brand dealerships in 2008 distance within 5 km distance within 5 km

Alfa Romeo 75 3,050 7.98 42.1 6.00 46.5
Audi 161 16,738 4.70 67.6 3.87 76.7
BMW 20 15,170 17.11 16.8 11.47 31.1
Cadillac 15 198 19.01 14.1 12.82 21.7
Chevrolet/Daewoo 137 7,421 5.00 64.9 3.98 76.6
Chrysler/Dodge 20 2,589 17.94 16.8 12.23 24.1
Citroën 162 24,139 4.40 69.9 3.42 83.2
Dacia 20 4,549 31.21 19.2 18.14 36.7
Daihatsu 99 9,186 6.26 52.9 5.24 59.2
Fiat 142 21,010 4.86 66.6 4.05 74.1
Ford 233 42,504 3.67 78.0 3.10 87.6
Honda 20 8,479 19.11 15.6 12.77 22.3
Hyundai 138 17,433 5.10 63.1 4.16 69.0
Jaguar 16 752 18.40 13.9 11.14 21.9
Jeep 20 784 17.94 16.8 12.23 24.1
Kia 115 12,236 5.70 54.5 4.95 56.2
Lancia 20 761 17.28 17.0 11.01 27.6
Land Rover 20 1,421 14.45 17.0 9.38 24.1
Lexus 13 1,044 19.57 16.4 13.08 25.0
Mazda 121 7,582 5.59 57.8 4.40 69.8
Mercedes-Benz 83 10,446 6.59 47.9 5.05 54.6
Mini 20 3,417 17.34 18.5 11.08 34.8
Mitsubishi 108 7,805 5.59 53.8 5.11 51.3
Nissan 114 10,259 6.03 51.6 5.19 59.1
Opel 233 40,405 3.55 78.7 3.09 86.8
Peugeot 187 40,250 4.14 72.9 3.36 83.7
Porsche 8 531 25.78 6.3 16.77 11.1
Renault 197 37,526 4.19 70.8 3.40 81.7
Saab 20 1,938 20.10 14.4 11.78 23.7
Seat 127 13,061 6.06 57.7 4.63 67.2
Skoda 97 9,461 6.14 51.3 4.84 59.3
Smart 20 952 14.37 20.2 10.33 23.7
Subaru 20 1,422 19.10 16.4 12.82 29.4
Suzuki 124 14,547 5.04 59.0 4.65 59.1
Toyota 141 38,997 4.70 66.7 4.10 70.8
Volkswagen 188 45,034 4.04 74.1 3.43 84.4
Volvo 114 16,487 5.34 61.5 4.14 73.3

Notes: Averages are weighted by number of households in each neighborhood.

and Lexus is indeed lower for the ten percent richest neighborhoods than for all neighborhoods. In

addition, the percentage of households within 5 kilometer is higher in the top decile in comparison

to all neighborhoods taken together. While this is suggestive of luxury brands locating closer to

neighborhoods where there is most demand for their cars, Table 3 also shows that these two facts

are also true for the rest of the brands, not just for the upscale brands. In fact, for both luxury and

mainstream brands, the weighted average distance for the top decile neighborhoods is on average

about two-thirds of that of all neighborhoods together. If endogeneity of location were a serious issue

then one would not expect to find a similar relation for the non-luxury brands. Nonetheless, the

28



possible endogeneity of location can in principle be addressed by including a rich set of interactions

between car characteristics and demographics (see also Nurski and Verboven, 2013). Moreover, we

do not use distance as an instrument, and therefore do not treat the location of dealers as exogenous

during the estimation of the model.

Our last dataset, discussed in Section 2, is obtained from two separate surveys that were ad-

ministered by TNS NIPO, a Dutch survey agency, in 2010 and 2011. The focus of the survey is on

characteristics and the behavior of Dutch car owners. Each of the in total 2,530 respondents that

participated in the survey has answered specific questions on which dealers were visited in relation

to the most recent purchased car, which provides useful information on how consumers search in

this market. In addition, we have information about the respondent’s household income, household

size, age, kids, and zip code. We use these data for the estimation of the micro moments. We

exclude respondents for which we do not observe income or a zip code, which leaves us with 2,024

observations. For the micro moments we focus on new car purchases in 2008 only—we assume that

all respondents that did not buy a new car in 2008 went for the outside option, which includes not

buying a car and buying a used car. According to data from the survey, slightly over 7 percent of

the respondents bought a new car in 2008, which equals the share of households in the Netherlands

that bought a new car in 2008.

5.2 Estimation results

In this section we report the estimation results for the search model. We also report results for the

full information model, so we can see how taking into account search frictions affects the estimates

of demand parameters and markups. We first show results for the conditional logit model. The

advantage of the logit model is that it allows us to explore the effects of search frictions in a very

simple setting. We next estimate a more complex model in which we estimate the supply side

alongside the demand model and allow for random coefficients. In this specification we also use

moments that are based on individual-level data from the survey, which will help identification

(Armstrong, 2014) and can improve the precision of the estimates (Petrin, 2002).

Conditional logit model

Table 4 gives the parameter estimates for the simplest version of the model, the conditional logit

model. We use a simplified version of equation (1)—we only allow for a single price coefficient and
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do not allow for any random coefficients so the indirect utility function is given by

uij = αpj + x′jβ + ξj + εij . (12)

As a benchmark case, in the first two columns we present the demand estimates for a model without

search frictions. The results in column (A) are obtained by regressing ln(sj) − ln(s0) on product

characteristics and price using ordinary least squares. The results in column (B) are obtained by

using an instrumental variables (IV) approach to control for possible correlation between unobserved

characteristics and price. As in most of the previous literature, we assume the car characteristics

to be exogenous. Since markups relate to how far away other car models are in the characteristics

space, this means prices will be correlated with the characteristics of other car models and these

characteristics can be used as instrumental variables.19

Except for horsepower per weight and the family car dummy, in both specifications all parameter

estimates have the expected sign and are significant—horsepower per weight has an unexpected

negative impact in the OLS specification, while the family car dummy is not significantly different

from zero in the IV specification in column (B). The price coefficient increases in magnitude in

the IV specification, which is to be expected given that higher unobserved quality components

should lead to higher prices. As a result the number of products with inelastic demands decreases

substantially, from 97 percent of all cars for the estimates in column (A) to less than 15 percent in

column (B). The results indicate that cars produced by non-European firms yield negative marginal

utility, which means cars produced by European firms (e.g., Peugeot/Citroën, Fiat, Volkswagen,

etc.) have a higher mean consumer valuation than cars produced by non-European firms (e.g.,

Toyota, Honda, etc.). Size, a higher mileage per euro, and cruise control as standard equipment all

affect the consumers’ mean utility in a positive way. Finally, consumers consider MPVs and SUVs

to have a positive marginal utility.

In the last column of Table 4 we present the demand estimates using our consumer search model.

We only use distance as a search cost shifter—we relate the search cost parameter γ to distances

from the centroid of a neighborhood to the nearest dealers. Even in the simple conditional logit

framework, once we include search frictions, there is no closed form solution for the market share

equations, so we proceed by simulating buying probabilities. Specifically, we randomly draw 2,209

neighborhoods from the demographic data, where each neighborhood is weighted by number of

19Specifically, as instruments we use own product characteristics, the number of other cars produced by the firm,
the number of cars produced by rival firms, the sum of product characteristics (cruise control, fuel efficiency, and
whether the car is a family car or MPV/SUV) of other cars produced by the firm, as well as the sum of the same
product characteristics of cars produced by rival firms.
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Table 4: Estimation results conditional logit

Full information Search
OLS IV GMM/IV
Logit Logit Logit

Demand Demand Demand
(A) (B) (C)

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Preference parameters
constant -12.111 (0.705)∗∗∗ -15.577 (1.208)∗∗∗ -14.109 (1.163)∗∗∗

HP/weight -1.049 (0.237)∗∗∗ 1.908 (0.822)∗∗ 1.745 (0.829)∗∗

non-European -0.512 (0.074)∗∗∗ -0.951 (0.142)∗∗∗ -0.879 (0.144)∗∗∗

cruise control 0.101 (0.087) 0.289 (0.110)∗∗∗ 0.176 (0.114)
fuel efficiency 2.671 (0.272)∗∗∗ 2.348 (0.317)∗∗∗ 2.307 (0.279)∗∗∗

size 2.386 (0.634)∗∗∗ 6.736 (1.348)∗∗∗ 5.910 (1.319)∗∗∗

family car 0.266 (0.097)∗∗∗ -0.248 (0.174) -0.159 (0.170)
MPV/SUV 0.276 (0.100)∗∗∗ 0.259 (0.112)∗∗ 0.238 (0.106)∗∗

price -0.012 (0.004)∗∗∗ -0.082 (0.019)∗∗∗ -0.070 (0.019)∗∗∗

Search cost parameters
distance — — 0.070 (0.032)∗∗

R2 0.344 n.a. n.a.
Objective function n.a. n.a. 0.021

Notes: ∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%. The number of observations is
1,382. Standard errors are in parenthesis. The number of simulated consumers used for the estimation
of specification (C) is 2,209.

inhabitants.20 Next we use the distances to the nearest dealer for each of the brands in our sample

to simulate search behavior for the 2,209 selected “consumers.” We estimate the model by GMM,

using the same instruments as when estimating specification (B), and use (Z ′Z)−1 as the weighting

matrix. The results shown in column (C) of Table 4 show that search costs are positively related

to distance and significantly different from zero at the five percent level. A comparison of the

estimation results with search to those without search shows that the price coefficient goes down

in absolute value, which suggests that ignoring search frictions may result in an overestimation of

consumer price sensitivity. We will come back to this when discussing the results for the complete

model below.

Estimation results complete model

The demand side estimates for the complete model are based on the utility function in equation

(1). We use the same attributes as those shown in Table 4 for the estimation of the simplified

model. As before, we estimate the mean marginal utility of each of these attributes, but now

we allow the marginal utility for some of the attributes to differ across consumers by estimating

20These draws are in fact a certain type of quasi-random draws constructed from a (0, 2, 47)-net in base 47, which
contains 472 =2,209 draws (see Sándor and András, 2004).
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a variance term for these attributes. Specifically, if a specific car characteristic has a random

coefficient, for all characteristics except for “family car” we use a standard normal draw for the

corresponding component of the diagonal matrix Vi. For “family car” the corresponding component

of the diagonal matrix is (kids)×υ3i, where kids is a dummy for whether there are children present

in the household and υ3i is a χ2(3)-distributed draw truncated at 95%. An advantage of using this

distribution is that it is bounded and skewed toward positive taste (see also Petrin, 2002). We

allow for heterogeneity in the price parameter in accordance with equation (2). This means that

in addition to normalizing prices by household income, we allow α to differ according to income

groups (see also Petrin, 2002). A simulated consumer’s household income is randomly drawn from

a log-normal distribution with scale parameter 0.28 (which is estimated outside the model) and

neighborhood-specific location parameter such that the mean (after-tax) household income level

in the neighborhood where the simulated consumer resides matches the neighborhood data from

Statistics Netherlands. The income bound y we use corresponds to a household income (after tax)

of e31,000.21 The kids dummy is obtained from the neighborhood-specific percentage of households

with children, i.e., the kids dummy equals 1 if that percentage is larger than a uniform draw on

(0, 1) and zero otherwise.

The estimation of the supply side is based on equation (7), where we use the fact that model j’s

marginal cost mcj equals the difference between its price and markup ∆(p)−1s(p). Our cost-side

variables are based on the attributes in the utility function and include a constant, indicators for

non-European and cruise control, and the natural logarithm of HP/weight, kilometers per liter,

and size.

We use two sets of micro moments. The first relates demographic information to buying deci-

sions. Specifically, we use two micro moments that match the model’s predicted average probability

of buying a new car conditional on income level to the survey data:

E[1{i purchases new vehicle} | {yi < y}],

E[1{i purchases new vehicle} | {yi ≥ y}],

where 1{i purchases new vehicle} is an indicator for the event that consumer i purchases a new

vehicle and {yi < y} and {yi ≥ y} correspond to the events that consumer i is in the low or

high income group, respectively. We also use two micro moments that relate the model’s predicted

21For the choice of income bound we are constrained by the income bins used in the survey. The chosen bound
approximately equals a household income of e47,600 before taxes, which corresponds to one of the cutoffs used to
create bins in the survey data.
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probability of buying a larger car (MPV/SUV or family car) conditional on either family size or

having children in the household to those observed in the survey data:

E[1{i purchases an MPV or SUV} | {i has a family size ≤ 3}],

E[1{i purchases a family car} | {i has children present in the household}].

The second set of micro moments matches the model’s predicted average probability of searching

at least twice conditional on income level and the number of dealers nearby to the survey data:

E[1{i searches at least twice} | {yi < y}],

E[1{i searches at least twice} | {yi ≥ y}],

E[1{i searches at least twice} | {number of dealers within 10km of i < 15}],

E[1{i searches at least twice} | {number of dealers within 10km of i ≥ 15}],

We use the approximation to the optimal weighting matrix as specified in Appendix D. To

obtain a first-consistent estimator of θ0, denoted by θ̂, we use

Ξ =

 (Z ′Z)−1 0

0 IM


where IM is the identity matrix of dimension M , which is the number of micro moments.

By including micro moments we can estimate a richer search cost specification than the one

used in the estimation of the conditional logit model. Specifically, in addition to distance we let

search costs depend on the logarithm of household income as well as a dummy for whether there are

children present in the household, where both are multiplied by the number of searches. In addition,

we estimate the parameter ρ, which can be interpreted as the expected value of not searching.

The estimation results for the search model are presented in the first two columns of Table

5. In specification (A) we allow for a random coefficient on the interaction of family car and

the kids dummy as well as a random coefficient on the constant.22 The price coefficients are

statistically significant at high significance levels. All else equal, consumers prefer larger and more

22Although not reported, we have estimated versions of the model with more random coefficients. Even though
most of the estimated base coefficients change somewhat as a result of allowing for more random coefficients, the
price and search cost parameter estimates appear robust to changes in the number of random coefficients. We prefer
a specification with less random coefficients since this increases the precision of the estimates. Moreover, with a full
set of random coefficients it is very difficult to do counterfactual exercises due to numerical issues when solving for
the price equilibrium (see also Skrainka, 2012).
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powerful cars: consumers put a positive value on the size of a car and on horsepower per weight.

The estimated coefficient of the non-European dummy is negative and highly significant, which,

consistent with the results for the conditional logit model, indicates consumers on average prefer

cars produced by European firms versus cars produced by non-European firms. We use cruise

control as a measure of luxuriousness; as expected, consumers put a positive value on cruise control

being a standard option. Except for the cost parameter on log(km per liter), all cost parameters

have the expected signs. Both the distance and income-related search cost parameters are highly

significant. Households with higher income have a higher opportunity cost of time and therefore

likely have higher search costs. The estimates indicate search costs are indeed positively related

to household income. Having children in the household does not significantly affect search costs.

The estimate for ρ indicates that the expected value of not searching is relatively large, which is

consistent with the high proportion of consumers not searching in any given year.

Specification (B) adds distance from the consumer to the nearest dealer to the utility function.

Although not significantly different from zero, distance has a negative effect on utility, which may

capture the negative effect on utility of service visits to dealers located farther away from the

consumer. Most of the other parameter estimates are very similar to those for specification (A),

although the estimated effect of distance on search costs decreases slightly, while having children

in the household now has a larger effect on search costs that is significant at the 10 percent level.

The price coefficients are similar to the estimates reported in the first column of Table 5.

The last two columns of Table 5 give parameter estimates in case we assume consumers have

full information, as in BLP. The results in column (C) of this table are obtained using the same

preference and cost side parameters as in specification (A) of the table, although we can no longer

use the search related micro moments. The estimated price coefficients indicate the marginal utility

of price has gone down substantially in comparison to the estimates for the search model. In column

(D) we add distance to the utility function. The distance from a consumer to the nearest dealer of a

brand has a negative marginal utility, which could be explained by the distance variable picking up

some of the search frictions that exist in this market. An alternative interpretation is that distance

in the utility captures the negative effect on utility of service visits to dealers located farther away

from the consumer. In this regard the estimate of the coefficient of distance has the expected

sign. In addition, the absolute values of the estimated price coefficients go up in comparison to the

estimates in column (C), which moves the estimated price coefficients further away from those for

the search model.

As explained before, our search model allows us to add more search cost covariates than distance
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Table 5: Estimation results with micro moments

Search Full Information
(A) (B) (C) (D)

Variable Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Price coefficients (price/income)
income less than 31k -6.417 (0.453)∗∗∗ -6.437 (0.506)∗∗∗ -7.477 (0.472)∗∗∗ -7.994 (0.560)∗∗∗

income more than 31k -2.280 (0.174)∗∗∗ -2.269 (0.176)∗∗∗ -3.573 (0.287)∗∗∗ -3.381 (0.263)∗∗∗

Base coefficients
constant -13.290 (0.196)∗∗∗ -13.167 (0.195)∗∗∗ -29.221 (0.242)∗∗∗ -30.688 (0.212)∗∗∗

HP/weight 1.572 (0.087)∗∗∗ 1.670 (0.088)∗∗∗ 2.329 (0.094)∗∗∗ 2.495 (0.093)∗∗∗

non-European -0.885 (0.030)∗∗∗ -0.879 (0.030)∗∗∗ -1.051 (0.032)∗∗∗ -1.030 (0.032)∗∗∗

cruise control 0.191 (0.039)∗∗∗ 0.170 (0.039)∗∗∗ 0.326 (0.043)∗∗∗ 0.249 (0.041)∗∗∗

fuel efficiency 2.558 (0.082)∗∗∗ 2.544 (0.081)∗∗∗ 2.220 (0.095)∗∗∗ 2.190 (0.088)∗∗∗

size 8.386 (0.218)∗∗∗ 8.361 (0.218)∗∗∗ 10.016 (0.258)∗∗∗ 9.984 (0.239)∗∗∗

family car -0.421 (0.039)∗∗∗ -0.429 (0.039)∗∗∗ -0.497 (0.044)∗∗∗ -0.397 (0.042)∗∗∗

MPV/SUV 0.623 (0.027)∗∗∗ 0.623 (0.027)∗∗∗ 0.620 (0.030)∗∗∗ 0.658 (0.030)∗∗∗

Random coefficients
constant 5.330 (0.827)∗∗∗ 5.306 (0.965)∗∗∗ 10.460 (0.896)∗∗∗ 11.623 (1.035)∗∗∗

family car × kids 0.677 (0.145)∗∗∗ 0.712 (0.154)∗∗∗ 0.559 (0.024)∗∗∗ 0.571 (0.024)∗∗∗

distance — -0.018 (0.013) — -0.034 (0.009)∗∗∗

Cost parameters
constant 2.743 (0.009)∗∗∗ 2.739 (0.009)∗∗∗ 2.981 (0.008)∗∗∗ 2.943 (0.008)∗∗∗

log(HP/weight) 1.071 (0.018)∗∗∗ 1.072 (0.018)∗∗∗ 1.049 (0.014)∗∗∗ 1.037 (0.015)∗∗∗

non-European -0.210 (0.007)∗∗∗ -0.211 (0.007)∗∗∗ -0.216 (0.006)∗∗∗ -0.214 (0.006)∗∗∗

cruise control 0.072 (0.008)∗∗∗ 0.067 (0.008)∗∗∗ 0.054 (0.007)∗∗∗ 0.054 (0.007)∗∗∗

log(km per liter) -0.964 (0.028)∗∗∗ -0.978 (0.028)∗∗∗ -1.022 (0.025)∗∗∗ -1.007 (0.025)∗∗∗

log(size) 0.359 (0.040)∗∗∗ 0.333 (0.040)∗∗∗ 0.625 (0.040)∗∗∗ 0.526 (0.039)∗∗∗

Search cost parameters
distance 0.028 (0.005)∗∗∗ 0.025 (0.007)∗∗∗ — —
log(income) 0.523 (0.025)∗∗∗ 0.524 (0.026)∗∗∗ — —
kids 0.263 (0.165) 0.302 (0.172)∗ — —

Expected value of not searching
mean 10.205 (0.425)∗∗∗ 10.310 (0.460)∗∗∗ — —

Notes: ∗ significant at 10%; ∗∗ significant at 5%; ∗∗∗ significant at 1%. The number of observations is 1,382. The number of
simulated consumers is 2,209. Standard errors are in parenthesis.

only. For instance, in both search specifications we include household income and a dummy for

whether there are children present in the household, which improves the fit of the search model.

We note that while the search model offers a natural justification for adding income or other

demographic information to the model, it is difficult to justify adding these variables to the utility

function in a full information model, which may explain why the existing literature has not followed

this approach.

Table 6 gives the estimated probabilities used for the micro moments as well as those from

the survey data. All specifications are able to match the probabilities from the survey data rel-

atively well—all estimated probabilities used as micro moments are well within 10 percent of the
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Table 6: Fit micro moments

Search Full information
Survey (A) (B) (C) (D)

Non-search related probabilities
E[1{i purchases an MPV or SUV} | {i has a family size ≤ 3}] 0.013 0.013 0.013 0.013 0.013
E[1{i purchases a family car} | {i has children in the household}] 0.048 0.048 0.048 0.048 0.048
E[1{i purchases new vehicle} | {yi < y}] 0.053 0.049 0.049 0.049 0.049
E[1{i purchases new vehicle} | {yi ≥ y}] 0.105 0.098 0.098 0.098 0.098

Search related probabilities
E[1{i searches at least twice} | {yi < y}] 0.061 0.060 0.060
E[1{i searches at least twice} | {yi ≥ y}] 0.096 0.096 0.096
E[1{i searches at least twice} | {# of dealers within 10km of i < 15}] 0.044 0.044 0.044
E[1{i searches at least twice} | {# of dealers within 10km of i ≥ 15}] 0.078 0.078 0.078

corresponding probabilities from the survey data.

5.3 Demand elasticities and markups

Table 7 gives demand elasticity estimates for a selection of car models sold in 2008 for both the

search model (using the estimates in column (B) of Table 5) and the full information model (using

the estimates in column (D) of the table). For all models, demand is estimated to be more inelastic

in the search model than in the full information model. This means that assuming consumers have

full information while in reality they do not, will lead to an overestimation of price sensitivity for

most car models. The cross-price elasticities show a similar pattern: the percentage change in

market share as a result of a percent increase in price of a rival model is in the majority of the

cases smaller in the search model than in the full information model.

Table 8 compares the estimated markups between the search model and the full information

model. Consistent with the elasticity patterns reported in Table 7, estimated markups in the search

model are higher for all the cars. For both specifications markups are increasing in the price of

the car, although as a percentage of the (pre-tax) price it is more increasing in price in the search

model than in the full information specification. The estimated average (sales-weighted) percentage

markup across all models in 2008 is 43 percent for the search model versus 35 percent for the full

information model. These numbers are not unrealistic: BLP report an average ratio of markup

to retail price of 24 percent for their main specification, whereas Petrin (2002) finds an average

markup of 17 percent for the model with micro moments. Goldberg (1995), on the other hand,

obtains higher markup estimates: wholesale price markups of on average 38 percent, which implies
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Table 7: Demand elasticity estimates

Mitsubishi Peugeot Volkswagen Opel Nissan Mercedes Renault Audi
Colt 207 Golf Astra Qashqai B Class Espace A6

Search
Mitsubishi Colt -2.5809 0.0921 0.0453 0.0279 0.0130 0.0056 0.0026 0.0055
Peugeot 207 0.0183 -2.6205 0.0403 0.0257 0.0133 0.0066 0.0040 0.0094
Volkswagen Golf 0.0079 0.0353 -2.2828 0.0386 0.0232 0.0046 0.0035 0.0088
Opel Astra 0.0068 0.0313 0.0538 -2.2454 0.0229 0.0047 0.0038 0.0094
Nissan Qashqai 0.0044 0.0224 0.0447 0.0316 -2.0919 0.0048 0.0043 0.0110
Mercedes B Class 0.0044 0.0260 0.0208 0.0152 0.0112 -2.0748 0.0077 0.0204
Espace 0.0021 0.0160 0.0164 0.0125 0.0103 0.0079 -2.1222 0.0221
Audi A6 0.0017 0.0143 0.0152 0.0117 0.0099 0.0078 0.0083 -2.3416

Full information
Mitsubishi Colt -3.0797 0.1396 0.0812 0.0499 0.0227 0.0076 0.0036 0.0080
Peugeot 207 0.0278 -3.1725 0.0734 0.0468 0.0241 0.0097 0.0062 0.0148
Volkswagen Golf 0.0142 0.0642 -2.9113 0.0614 0.0364 0.0085 0.0067 0.0165
Opel Astra 0.0121 0.0570 0.0854 -2.8816 0.0359 0.0088 0.0073 0.0180
Nissan Qashqai 0.0076 0.0406 0.0701 0.0497 -2.7269 0.0093 0.0085 0.0215
Mercedes B Class 0.0060 0.0384 0.0383 0.0285 0.0219 -2.6864 0.0133 0.0346
Espace 0.0029 0.0250 0.0309 0.0241 0.0203 0.0135 -2.9271 0.0380
Audi A6 0.0024 0.0225 0.0286 0.0223 0.0193 0.0133 0.0143 -3.2616

Notes: Demand elasticities are calculated for 2008. Percentage change in market share of model i with a one percent
change in the price of model j, where i indexes rows and j columns. Elasticities for the search model are calculated
using estimates from specification (B) in Table 5; those for the full information model are based on specification
(D) in Table 5.

even larger retail price markups. In both the search model and the full information model, the

Volkswagen Golf is the most profitable model among the ones listed in Table 8, and one of the most

profitable models in general.

5.4 Counterfactuals

In this section we study the effects of two changes in the primitives of the model, using the search

model estimates reported in column (B) of Table 5. First, we look at what happens to equilibrium

prices when search costs change. Secondly, we explore what happens to prices and profits when one

of the multi-product firms starts retailing all of its brands in each and everyone of its dealerships.

Change in search costs

To see how prices change if search costs decrease, we take the estimates reported in column (B)

of Table 5 and simulate equilibrium prices and market shares setting the non-random part of each

consumer’s search cost equal to a specific percentage of her estimated search cost. Table 9 shows

the effects on prices for a few selected models, for various levels of search costs. In most of these

cases, prices go down for small decreases in search costs. For instance, the simulated price of a
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Table 8: Markups

Search Full information
pre-tax markup percentage variable markup percentage variable

price price over MC markup profit over MC markup profit

Mitsubishi Colt 10,213 6,819 2,468 36.19 9.57 2,071 30.36 8.03
Peugeot 207 13,540 9,289 3,463 37.28 50.87 2,933 31.57 43.08
Volkswagen Golf 16,632 11,206 5,007 44.68 68.38 4,054 36.17 55.36
Opel Astra 17,799 11,697 5,120 43.77 46.96 4,060 34.71 37.24
Nissan Qashqai 21,083 13,559 6,508 48.00 36.43 5,071 37.40 28.39
Mercedes B Class 25,290 16,574 7,734 46.66 15.37 6,016 36.30 11.95
Renault Espace 34,516 22,061 10,407 47.17 14.86 7,645 34.65 10.92
Audi A6 41,033 25,927 11,725 45.22 37.50 8,691 33.52 27.80

Notes: Prices and markup over MC are in Euros. Variable profit is in Euro×1 mln. Markups and profits for the search
model are calculated using estimates from specification (B) in Table 5; those for the full information model are based
on specification (D) in Table 5. Percentage markup is calculated as (p∗j −mcj)/p∗j , where p∗j is the pre-tax price of car

j. Variable profit is calculated as qj · (p∗j −mcj), where qj is the sales of car j.

Peugeot 207 drops from e13,540 to e13,441 when search costs are reduced to 90 percent of the

estimated search costs. However, after this initial price drop, prices tend to increase for larger

reductions in search costs: the simulated price of a Peugeot 207 when search costs are 50 percent

of the estimated search costs is e13,843, which is higher than the price observed in the data. In

fact, for more than half the models shown in Table 9, when search costs are zero (i.e., zero percent)

prices are higher than prices in the original data. A similar pattern emerges when looking at the

average price across all models: prices initially decrease when search costs are lowered, but for

larger decreases in search costs, prices tend to go up, until they more or less stabilize for search

costs lower than 30 percent of the estimated search costs.

In Table 9 we also report prices when using the estimates to simulate prices under the full

information model. As we have shown in Section 3, the full information model is only equivalent to

the search model when γ → −∞, which means that the simulated prices under the full information

model are not necessarily similar to those when search costs are zero percent of the estimated search

costs. However, as shown in the last column of the table, simulated prices are very similar to those

in the next-to-last column of the table, and are consistent with our finding that prices tend to

decrease with search costs for about half of the models. Also notice that if the deterministic part

of search cost is zero then the only difference between the search model and the full information is

the search cost shock λiS , so the small difference between simulated prices when search costs are

zero and simulated prices under the full information model suggests the search cost shock does not

have a major impact on equilibrium prices.

The non-monotonic relationship we find between prices and search costs deserves an explanation.
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Table 9: Simulated prices for different search cost levels

prices when search costs are x percent of the estimated search costs full
Model 130% 110% 100% 90% 70% 50% 30% 10% 0% info

Mitsubishi Colt 10,474 10,273 10,213 10,178 10,233 10,433 10,478 10,469 10,464 10,406
Peugeot 207 13,843 13,633 13,540 13,441 13,481 13,843 13,937 13,911 13,898 13,795
Volkswagen Golf 22,191 17,771 16,632 15,943 15,341 15,529 15,674 15,631 15,612 15,481
Opel Astra 22,458 19,054 17,799 16,959 16,128 16,159 16,265 16,223 16,205 16,073
Nissan Qashqai 24,961 22,465 21,083 19,905 18,563 18,532 18,715 18,660 18,633 18,426
Mercedes B Class 26,039 25,588 25,290 24,922 24,589 25,350 25,593 25,513 25,474 25,131
Renault Espace 34,344 34,455 34,516 34,557 34,632 34,840 34,950 34,926 34,915 34,837
Audi A6 40,865 40,961 41,033 41,077 41,184 41,463 41,613 41,587 41,575 41,521

Average (sales weighted) 20,509 19,140 18,613 18,179 17,875 18,504 18,783 18,751 18,733 18,450
Average 30,107 29,476 29,214 28,969 28,696 28,926 29,076 29,033 29,012 28,860

Share not searching 0.9740 0.9484 0.9242 0.8828 0.6703 0.1870 0.0026 0.0000 0.0000 0.0000

Notes: Prices are in Euros. The prices shown are simulated prices when search costs are x percent of the non-random
part of the estimates search costs from specification (B) in Table 5, where x is between 0 and 130 percent. The last
column gives simulates prices for the full information model.

As noted before, in our model an increase in search costs has three different effects. First, as can

be seen in Table 9, as search costs increase the share of consumers not searching goes up. If

the consumers who remain in the market are the more elastic ones, as demonstrated in Moraga-

González, Sándor, and Wildenbeest (2014), firms get an incentive to lower their prices. Second,

as it is standard in search models, higher search costs give firms enhanced market power over the

consumers who visit, and thereby firms have an incentive to raise their prices. Finally, because we

have a model in which prices are observed before search, higher search costs increase competition

for visits, and this put downward pressure on prices (see also Footnote 13). The latter effect

is because consumers in our model determine the optimal subset of dealers to visit by making a

tradeoff between the expected utility and the search costs of visiting these dealers. Since the former

depends on the observed prices of the cars, a lower price for a specific car model makes it more

likely a consumer includes the dealer selling that car in her choice set, which leads to a negative

relation between search costs and prices. Which of the three effects will dominate depends on the

level of search costs as well as the level of competition. Both of these are determined at the model

level, which explains why we find that simulated prices are increasing in search costs for some car

models, while decreasing for other cars.

Selling different makes at same dealership

Most of the 16 firms in our data own several brands. For instance, the Volkswagen Group owns

Audi, Seat, Skoda, and Volkswagen, and the Toyota Group owns Daihatsu, Lexus, and Toyota.
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Whereas firms typically sell their brands in separate dealerships, in a setting where search frictions

are important it might be beneficial to sell multiple brands at the same location.23 Although in

the Netherlands most manufacturers sell their brand at separate, single-brand dealerships, some

manufacturers let some (or all) of their brands be sold under one roof. For instance, Audi and

Volkswagen are typically sold at the same dealership, just as BMW and Mini (both part of the

BMW Group).

To study the effects of retailing different brands within a single dealership on prices, market

shares, and profits, we let all Toyota dealerships sell Lexus as well, while at the same time we

eliminate the locations of the Lexus dealerships. In terms of the model this means that by visiting

this combined Toyota-Lexus dealer, consumers observe relevant characteristics for all Toyota and

Lexus models. Since Toyota has the most dense dealership network of the two brands, the number

of dealers selling Lexus’ cars goes up substantially, from 13 to 141, which means that average search

costs for Lexus go down considerably.

Table 10 reports the simulated prices, market shares, and profits of the major brands in our

dataset after the change in the use of the dealership networks. Average prices go down for all

manufacturers, although the changes are small. The reduction in search costs is beneficial to all

manufacturers since consumers are less likely to select the outside option, and, as a result of Toyota

Group’s change in Lexus brand retailing strategy, sales and profits go up for all manufacturers.

The Toyota Group profits the most from the changes: sales go up by 1,131 cars (2.3 percent), while

variable profits go up by e9.9 mln (4.6 percent). Of the three brands that are part of the Toyota

Group, Lexus benefits the most: sales go up by 718 cars, which is an increase of 68.8 percent.

Notice that in this calculation we have ignored changes in the fixed costs associated to this business

reorganization.

6 Conclusions

In many markets consumers have imperfect information about the utility they get from the various

alternatives available and have to engage in costly search to find out which products they prefer

most. While the theoretical consumer search literature is well established, much less work exists

trying to estimate demand and supply for environments in which consumer search is important.

This paper has contributed to the literature by presenting and estimating a discrete choice model

23Moraga-González and Petrikaitė (2013) show that a firm that puts on display all its products unfolds the economies
of search associated to one-stop shopping, which makes the firm more attractive for consumers and tends to increase
profitability. However, a firm that stocks more products together increases competition with the rival firms and this
tends to lower profits. Which of these effects dominates depends on the magnitude of search costs.
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Table 10: Sales, market shares, and prices for new dealer network

sales (units) market shares (%) prices (e) profits (mln e)
Group before after before after before after before after

BMW 18,587 18,728 3.80 3.78 50,527 50,513 162.15 164.02
Daimler-Chrysler 14,771 14,892 3.02 3.01 42,581 42,562 129.93 131.38
Fiat 24,821 25,071 5.07 5.06 18,594 18,576 84.59 85.12
Ford 68,746 69,504 14.04 14.03 38,692 38,665 476.40 481.49
Fuji 1,422 1,433 0.29 0.29 23,560 23,549 8.23 8.27
General Motors 49,962 50,506 10.20 10.20 24,096 24,076 240.62 242.75
Honda 8,479 8,555 1.73 1.73 23,017 23,002 46.14 46.29
Hyundai 17,433 17,611 3.56 3.56 16,521 16,503 64.66 65.14
Kia 12,236 12,358 2.50 2.49 19,100 19,080 49.45 49.74
Mitsubishi 7,805 7,888 1.59 1.59 27,808 27,792 33.35 33.52
Porsche 531 533 0.11 0.11 76,783 76,782 6.73 6.81
PSA Peugeot Citroen 64,389 65,109 13.15 13.14 21,520 21,497 296.75 299.20
Renault-Nissan 52,334 52,882 10.69 10.68 21,088 21,065 238.00 239.67
Suzuki 14,547 14,702 2.97 2.97 12,477 12,469 42.12 42.36
Toyota 49,227 50,358 10.05 10.17 30,018 29,987 217.61 227.51

Daihatsu 9,186 9,271 1.88 1.87 11,618 11,617 23.74 23.79
Lexus 1,044 1,762 0.21 0.36 64,262 64,118 11.98 20.27
Toyota 38,997 39,325 7.97 7.94 25,021 25,023 181.89 183.45

Volkswagen 84,294 85,250 17.22 17.21 27,945 27,909 534.99 540.95

Total 489,584 495,380 100.00 100.00 29,214 29,192 2,631.70 2,664.23

Notes: Profits exclude fixed costs. Results are obtained using the estimates from specification (B) in Table 5.

of demand with optimal consumer search. While doing so, we have allowed for unobserved product

heterogeneity as in BLP, which sets our paper apart from recent contributions on the theme.

Specifically, in our model consumers are initially unaware of whether a given product is a good

match or not. Consumer decision making consists of a search stage and a purchase stage. In the

search stage, consumers optimally determine which sellers to visit in order to maximize expected

utility. In making this decision, consumers take into account their preferences for the various

alternatives as well as the costs of searching them. In the purchase stage, after the matching

parameters of all products in their choice sets are revealed, consumers either pick the good with

the highest realized utility among the products searched, or else go for the outside option. We have

provided a way to estimate the model and have applied it to the Dutch market for automobiles.

We use distances from consumers to the nearest dealer of a specific brand as well as household

characteristics reflecting the opportunity cost of time to specify consumer search costs. Even

though the model can be estimated using only aggregate data such as market shares, product

characteristics, and consumer and dealer locations, we have supplemented the data with a survey

on actual dealer visits for a large number of respondents to strengthen the identification and improve

the precision of the estimates.

The survey reveals that consumers conduct a rather limited amount of search before buying.
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Moreover, a great deal of the searches involves test-driving a car. Our estimation results have shown

that search costs are both significant and economically meaningful. Assuming, instead, that search

frictions are negligible and consumers have full information results in higher own- and cross-price

estimates, as well as lower estimated percentage markups.

In line with recent theoretical work, we have argued that the effects of lower search costs in a

market are potentially ambiguous. On the one hand, lower search costs result in more search and

thereby lead to stronger pressure on firms to cut prices. On the other hand, lower search costs

make it easier for a firm to enter the search set of a consumer, which weakens the incentives of

firms to cut prices. Finally, higher search costs push some inelastic consumers out of the market

which changes the overall elasticity of demand. In our application we have found that prices go up

for some car models when moving from a search model to a full information model.

Finally, we have investigated the effects of changes in the usage of firm dealership networks.

Intuition suggests that the effect of retailing more car brands within a dealership on prices and

profits is likely to be ambiguous. On the one hand, if a firm offers more cars at a dealership,

this dealership becomes more attractive for consumers because of the implied economies of search

associated with one-stop shopping. This tends to relax competition and lower demand. However,

if a firm chooses to offer more cars then rival firms need to be more aggressive if they wish to enter

consumer search sets. This tends to lower prices and expand demand. For the case of the Dutch

market, we have found that if Toyota started to sell Lexus cars in all its dealerships, then prices

for all cars would go down but demand would expand. This not only benefits Toyota brands, but

also leads to higher sales and profits at all other brands.
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De los Santos, Babur, Ali Hortaçsu, and Matthijs R. Wildenbeest: “Testing Models of Consumer

Search Using Data on Web Browsing and Purchasing Behavior.” American Economic Review

102, 2955–2980, 2012.
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A Derivation of Buying Probabilities

Let c̄iS = t′iSγ is the (mean) cost of searching the dealers contained in S. Since

exp[miS ] = exp
[
−t′iSγ

]1 +
∑
f∈S

exp[δif ]

 ,

we get

sij =
exp[δij ]

∑
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S′∈S exp[miS′ ]
=
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∑
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Since

∑
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∏
f∈S

exp
[
−t′i{f}γ

]
=

∏
g∈F\{f}

(
1 + exp

[
−t′i{g}γ

])
=

∏
g∈F

(
1 + exp

[
−t′i{g}γ

])
(

1 + exp
[
−t′i{f}γ

]) ,

we have that

sij =

exp[δij ] exp
[
−t′i{f}γ

] ∏
g∈F

(
1+exp

[
−t′
i{g}γ

])
(

1+exp
[
−t′
i{f}γ

])∑
S′∈S exp[miS′ ]

=

exp[δij ](
1+exp

[
t′
i{f}γ

])ΠiF∑
S′∈S exp[miS′ ]

,

where ΠiF =
∏
g∈F

(
1 + exp

[
−t′i{g}γ

])
.
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Now note that si0 is given by

si0 =
exp(ρ) +

∑
S∈S�{∅} exp [−c̄iS ]∑

S′∈S exp[miS′ ]
=

exp(ρ) +
∑

S∈S�{∅} exp [−t′iSγ]∑
S′∈S exp[miS′ ]

=

1
φ +

∑
S∈S�{∅}

∏
f∈S

exp
[
−t′i{f}γ

]
∑

S′∈S exp[miS′ ]
=

1
φ − 1 +

∑
S∈S

∏
f∈S

exp
[
−t′i{f}γ

]
∑

S′∈S exp[miS′ ]

=

1
φ − 1 +

∏
f∈F

(
1 + exp

[
−t′i{f}γ

])
∑

S′∈S exp[miS′ ]
=

1
φ − 1 + ΠiF∑
S′∈S exp[miS′ ]

=

(
1−φ
φΠiF

+ 1
)

ΠiF∑
S′∈S exp[miS′ ]

,

where φ = exp [−ρ]. Since
∑J

j=0 sij = 1, it has to be that

∑
S′∈S

exp[miS′ ] =

(
1− φ
φΠiF

+ 1

)
ΠiF +

J∑
k=1

exp[δik]

1 + exp
[
t′i{g}γ

]ΠiF

= ΠiF

1− φ
φΠiF

+ 1 +

J∑
k=1

exp[δik]

1 + exp
[
t′i{g}γ

]
 .

Consequently,

sij =

exp[δij ]

1 + exp
[
t′i{f}γ

]
1− φ
φΠiF

+ 1 +
J∑
k=1

exp[δik]

1 + exp
[
t′i{g}γ

] ,

si0 =

1− φ
φΠiF

+ 1

1− φ
φΠiF

+ 1 +

J∑
k=1

exp[δik]

1 + exp
[
t′i{g}γ

] . (A13)

B Contraction Mapping

Contraction Theorem (BLP). Let f : RJ → RJ be defined as

fj (ξ) = ξj + ln sj − lnσj (ξ) , j = 1, . . . , J,
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where s = (s1, . . . , sJ) is the vector of observed market shares and suppose that the market share

vector σ (ξ) as a function of ξ = (ξ1, . . . , ξJ) ∈ RJ satisfies the following conditions.

1. σ is continuously differentiable in ξ and

∂σj
∂ξj

(ξ) ≤ σj (ξ) ,
∂σj
∂ξk

(ξ) < 0 for any j, k 6= j and ξ ∈ RJ ,

(the former is equivalent to the fact that the function σj : RJ → R, σj (ξ) = σj (ξ) exp (−ξj)

is decreasing in ξj) and
J∑
k=1

∂σj
∂ξk

(ξ) > 0 for any ξ ∈ RJ .

2. The share of the outside alternative σ0 (ξ) = 1−
∑J

j=1 σj (ξ) is decreasing in all its arguments

and it satisfies that for any j and x ∈ R the limit

lim
ξ−j→−∞

σ0 (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξJ) ≡ σ̃j0 (x)

is finite and the function σ̃j0 : R→ R obtained as the limit satisfies that

lim
x→−∞

σ̃j0 (x) = 1 and lim
x→∞

σ̃j0 (x) = 0,

where ξ−j → −∞ means that ξ1 → −∞, . . . , ξj−1 → −∞, ξj+1 → −∞, . . . , ξJ → −∞.

3. The function σj defined in Condition 1 satisfies

lim
ξ→−∞

σj (ξ) > 0.

Then there are values ξ, ξ ∈ R such that the function f :
[
ξ, ξ
]J → RJ defined by f j (ξ) =

min
[
ξ, fj (ξ)

]
has the property that f

([
ξ, ξ
]J) ⊆ [ξ, ξ]J , is a contraction with modulus less than

1 with respect to the sup norm ‖(x1, . . . , xJ)‖ = maxj |xj |, and, in addition, f has no fixed point

outside
[
ξ, ξ
]J

.

Here we verify that conditions 1,2, and 3 of this theorem are satisfied for σ equal to the market

share vector function s = (s1, . . . , sJ), where sj =
∫
sijdFτ (τi), j = 1, . . . , J . Note that equations
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(5) and (A13) imply the derivatives

∂sij
∂ξj

= (1− sij) sij ,
∂sij
∂ξk

= −siksij for j 6= k,
∂si0
∂ξj

= −sijsi0,

∂sj
∂ξj

=

∫
(1− sij) sijdFτ (τi),

∂sj
∂ξk

= −
∫
sijsikdFτ (τi),

∂s0

∂ξj
= −

∫
sijsi0dFτ (τi). (A14)

Condition 1. Clearly the market share vector s is continuously differentiable in ξ. We can see

that
∂sj
∂ξj
≤ sj holds because

∂sj
∂ξj
− sj = −

∫
s2
ijdFτ (τi) ≤ 0. The inequality

∂sj
∂ξk

< 0 holds obviously.

The third inequality,
∑J

k=1
∂sj
∂ξk

> 0 follows by observing that

J∑
k=1

∂sj
∂ξk

=
J∑
k=1

∂sk
∂ξj

= −∂s0

∂ξj
,

which is positive by equation (A14).

Condition 2. The fact that the share of the outside alternative s0 = 1−
∑J

j=1 sj is decreasing

in all its arguments follows from equation (A14). Next we compute the limit

lim
ξ−j→−∞

s0 (ξ1, . . . , ξj−1, x, ξj+1, . . . , ξJ) ≡ s̃j0 (x) .

From equation (A13) we see that

s̃j0 (x) =

1− φ
φΠiF

+ 1

1− φ
φΠiF

+ 1 +
exp[δij (x)]

1 + exp
[
t′i{f}γ

] ,

where δij (x) denotes the expression δij where ξj is replaced by x. From this it is straightforward

to obtain that limx→−∞ s̃
j
0 (x) = 1 and limx→∞ s̃

j
0 (x) = 0.

Condition 3. We show that limξ→−∞ sj (ξ) exp (−ξj) > 0. We have

lim
ξ→−∞

sj exp (−ξj) =

∫
lim

ξ→−∞
sij exp (−ξj) dFτ (τi).
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Further, from equation (5) we have

sij exp (−ξj) =

exp[αipj + x′jβi]

1 + exp
[
t′i{f}γ

]
1− φ
φΠiF

+ 1 +

J∑
k=1

exp[δik]

1 + exp
[
t′i{g}γ

] ,

so the numerator does not depend on ξk for any k = 1, . . . , J . Therefore,

lim
ξ→−∞

sj exp (−ξj) = φΠiF

exp[αipj + x′jβi]

1 + exp
[
t′i{f}γ

]
1− φ+ φΠiF

,

which is strictly positive. In conclusion, the contraction property is established.

C Micro Moments

In order to describe the micro moments it is useful to introduce some notation. Suppose that we

observe the demographic characteristics and purchase decisions of N consumers. Let i ∈ {1, . . . , N}

and for simplicity maintain the notation vi for the vector of consumer i’s unobserved and observed

characteristics (i.e., Vi = diag (vi)). Denote by ai ∈ {0, 1, . . . , J} the choice of i, yi the income of i

and ri a discrete demographic characteristic of i out of the vector di of all demographic character-

istics, like age or family size. In order to be general we use a generic demographic characteristic qi

for either yi or ri, and let R be a partitioning of the possible values of qi into a few (two or three)

subsets. Let T denote a certain group of products, like family car. We consider micro moments

based on the following type of conditional expectations:

E [1 (ai ∈ T ) |qi ∈ Rk] , k = 1, 2 where R = {R1, R2} .

For specific examples we refer to Section 5.

LetR ∈ R. Since we observe the choice of each consumer i ∈ {1, . . . , N}, the micro moments boil

down to aggregation of the choice aiT of i regarding T over those consumers i whose demographic

characteristic satisfies that qi ∈ R, where

aiT =

 1 if ai ∈ T

0 otherwise.
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Note that aiT is a Bernoulli random variable with success probability

siT (θ) = P (aiT = 1|p, x, θ, ξ, vi) = P (ai ∈ T |p, x, θ, ξ, vi) =
∑
j∈T

P (ai = j|p, x, θ, ξ, vi) =
∑
j∈T

sij

and independent across i conditional on (p, x, θ, ξ, vi). Therefore,

E [aiT |p, x, θ, ξ, vi] = siT (θ)

var [aiT |p, x, θ, ξ, vi] = siT (θ) (1− siT (θ)) . (A15)

Aggregation over i s.t. qi ∈ R yields the moment

gRq (θ) =
1

NR

N∑
i=1
qi∈R

(aiT − siT (θ)) , (A16)

where NR is the number of consumers i for which qi ∈ R. This is just the sample counterpart of

the moment condition

E [aiT − siT (θ) |p, x, θ, ξ, vi] = 0

over the sample of consumers i with qi ∈ R.

D The Weighting Matrix

The optimal choice of Ξ is a matrix proportional to

[
Var

(
g
(
θ0
))]−1

=
(
E
[
g
(
θ0
)
g
(
θ0
)′])−1

,

where θ0 is the true value of the parameter vector θ. Since the micro moments depend on the

demand unobserved characteristics ξ, this weighting matrix is not a block diagonal in general.

Several components of this matrix can be computed exactly; for example, the variances of the

micro moments (see equation (A15)). However, several other components cannot be computed

exactly. Therefore, in order to obtain a positive definite weighting matrix, we propose this matrix

to be approximated as

Ξ =

 VJ

(
θ̂
)

0

0 VN

(
θ̂
)
−1

,
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where θ̂ is a previously obtained consistent estimator of θ0,

VJ

(
θ̂
)

=
1

(2J)2

2J∑
j=1

(
Z ′jψj

(
θ̂
)
− gJ

(
θ̂
))(

Z ′jψj

(
θ̂
)
− gJ

(
θ̂
))′

,

and VN

(
θ̂
)

is a diagonal matrix whose main diagonal contains the variances of the micro moments

computed as in equation (A15).

Alternative choices for Ξ are Ξ = I (the identity matrix) or

Ξ =

 (Z ′Z)−1 0

0 IM


where IM is the identity matrix of dimension M , which is the number of micro moments.

E Importance Sampling and Estimation of the Scale Parameter

We start by succinctly extending the model for the case where the scale parameter is not fixed to

1. Recall that the utility consumer i derives from car j and the outside alternative are given by:

uij = αipj + x′jβi + ξj + σεεij ,

ui0 = σεεi0.

Consumer i’s search cost for visiting all the dealerships in S is

ciS = t′iSγ + σλλiS ,

where (−λiS) are i.i.d. type I extreme value distributed across consumers and subsets of dealers.

Those consumers who pick a choice set that only includes the outside good face the search cost

ci∅ = λi∅.

Recall that the expected gains to consumer i from searching the dealerships in a subset S are

miS − σλλiS ,

where

miS = E

[
max

j∈Gf∪{0}, f∈S
{uij}

]
− t′iSγ.
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If F denotes the CDF of εij , the random variable maxj∈Gf∪{0}, f∈S {uij/σε} has CDF
∏

j∈Gf∪{0}, f∈S
F (u−

δij/σε), where δij is the mean utility consumer i derives from alternative j, i.e., δij = αipj+x
′
jβi+ξj .

Using this, we obtain

miS = σε log

1 +
∑
f∈S

exp[∆if ]

− t′iSγ,
mi∅ = 0,

where ∆if = log
(∑

j∈Gf exp[δij/σε]
)

.24 Consumer i will pick the subset Si that maximizes the

expected gain miS − σλλiS , i.e.,

Si = arg max
S∈S

[miS − σλλiS ]

= arg max
S∈S

σε log

1 +
∑
f∈S

exp[∆if ]

− t′iSγ − σλλiS
 .

Since we assume (−λiS) is i.i.d. type I extreme value distributed, the probability that consumer i

finds it optimal to sample the set of dealers Si is PiSi where

PiS =
exp[miS/σλ]∑

S′∈S exp[miS′/σλ]
.

Given that consumer i searches the set Si, the probability that consumer i buys j is equal to the

probability that j is purchased out of the products of the firms in Si is Pij|Si where

Pij|S =
exp[δij/σε]

1 +
∑

r∈S exp[δir/σε]
.

In order to see which parameters can be identified, we can write PiS out:

PiS =
exp

[
σε
σλ

log
(

1 +
∑

f∈S
∑

j∈Gf exp
[
δij
σε

])
− t′iS

γ
σλ

]
∑

S′∈S exp
[
σε
σλ

log
(

1 +
∑

f∈S′
∑

j∈Gf exp
[
δij
σε

])
− t′iS′

γ
σλ

] . (A17)

Note that the vector γ only appears in the model in these expressions, that is, in the fractions

γ/σλ. Therefore, only these fractions can be identified. The parameter σλ also appears in the

fraction σε/σλ, which can be identified. Elsewhere, σε only appears in the fractions δij/σε, which

can be identified, but are not sufficient to identify the utility parameters together with σε and σλ.

24Note that we have set the value of the outside option when not searching to ρ = 0. This can easily be relaxed.

53



In conclusion, we can only identify the fraction σε/σλ.

Based on these arguments, we can reparametrize the model. One possible reparametrization is

to assume σε = µ, σλ = 1, and preserve the same notation for the utility parameters, even though

they are divided by µ. Then

PiS =
exp

[
µ log

(
1 +

∑
f∈S

∑
j∈Gf exp [∆ij ]

)
− t′iSγ

]
∑

S′∈S exp
[
µ log

(
1 +

∑
f∈S′

∑
j∈Gf exp [∆ij ]

)
− t′iS′γ

] (A18)

and

miS = µ log

1 +
∑
f∈S

∑
j∈Gf

exp [∆ij ]

− t′iSγ,
mi∅ = 0.

In this case

Pij|S =
exp[∆ij ]

1 +
∑

r∈S exp[∆ir]
.

Then the interpretation of the parameter µ is that it measures the magnitude in utility terms of

the “search-like” product attributes. We note that a value µ > 1 also reduces the effect of the

unobserved cost shocks λiS . For practical reasons it is better to use equation (A18); denote the

variables involved in ∆ij =
δij
σε

by ai = αi
σε
,bi = βi

σε
, ηj =

ξj
σε

, that is, ∆ij = aipj + x′jbi + ηj .

Integrating out Si from the probability that consumer i purchases product j, we obtain:

sij =
∑
S∈Sf

PiSPij|S

=
∑
S∈Sf

exp[miS ]∑
S′∈S exp[miS′ ]

exp[∆ij ]

1 +
∑

r∈S exp[∆ir]
.

Let τi := (αi, βi) be the vector of all random variables that capture consumer heterogeneity. Then

the probability that product j is purchased is the integral

sj =

∫
sijfτ (τi)dτi. (A19)

We now provide a procedure to simulate these market shares by importance sampling methods.
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Simulation of market shares

We use the empirical distribution of consumer demographics, including distances to dealers to

proxy for search costs, which means the predicted market shares given by equation (A19) do

not have an analytical solution and need to be simulated. Implementation of the simulations

is not straightforward due to two problems. The first problem arises from the sum over 2F−1

choice sets involved in sij . The sum can be viewed as an expected value of a discrete random

variable and estimated by Monte Carlo simulations by sampling from the discrete distribution.

However, Monte Carlo simulations applied directly lead to estimators that are not continuous in

the model parameters, which causes problems when we use them in optimization algorithms to find

the estimates of the parameters. An additional complexity is that for a large number of firms, as in

our empirical application, the number of choice sets from which one needs to sample is extremely

large.

We can use importance sampling to tackle these two computational problems together. For this

we first construct importance sampling probabilities. For an arbitrary choice set S, let

QiS(θ) =
∏
g∈S

φig(θ)
∏
h/∈S

(1− φih(θ)),

where φig are probabilities that will be specified below in (A21). We define the importance sampling

probabilities as the set {QiS}S∈S−f , where S−f denotes the set of all subsets of F\{f}, QiS =

QiS(θ0), and θ0 is the initial value of the parameters used in the numerical search for the parameter

estimates. We note that these probabilities have a structure similar to those in Sovinsky Goeree

(2008).

In order to estimate sj first we rewrite sij =
∑

S∈Sf PiSPij|S as

sij =
∑

S∈S−f

Pi{f}∪SPij|{f}∪S ,

Clearly, for S ∈ S−f

Pi{f}∪S =
exp

[
µ log

(
1 + exp[∆if ] +

∑
g∈S exp[∆ig]

)
−
(
t′if +

∑
g∈S t

′
ig

)
γ
]

∑
S′∈S exp[miS′ ]

and

Pij|{f}∪S =
exp(∆ij)

1 + exp(∆if ) +
∑

g∈S exp(∆ig)
.
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Now, rewrite sij in the importance sampling form

sij =
∑

S∈S−f

QiS
Pi{f}∪S

QiS
Pij|{f}∪S ,

where
∑

S∈S−f QiS = 1 holds. A set S drawn randomly from S−f can be represented as the vector

of [0, 1] i.i.d. uniform random variables ui,−f = (ui1, . . . , uif−1, uif+1, . . . , uiF ) because according to

the importance sampling probabilities we can draw S by drawing ui,−f such that g ∈ S iff uig ≤ φig
for all g ∈ F\{f} (we omit the argument θ0 from φig(θ0)). So we can use the argument ui,−f in

the expressions involved in sij . We introduce

Qif (ui) =
∏

g∈F\{f}

φ
1(uig≤φig)
ig (1− φig)1(uig>φig)

Pif (ui) =

exp

log

(
1 + exp[∆if ] +

∑
g∈F\{f}

1 (uig ≤ φig) exp[∆ig]

)
−
(
t′if +

∑
g∈F\{f}

1(uig ≤ φig)t′ig
)
γ


∑
S′∈S

exp[miS′ ]

Pij|f (ui) =
exp(∆ij)

1 + exp(∆if ) +
∑

g∈F\{f}

1 (uig ≤ φig) exp(∆ig)
,

where 1(uig ≤ φig) is the indicator of the event (uig ≤ φig). These correspond to QiS , Pi{f}∪S and

Pij|{f}∪S , respectively. Then

sij =

∫
[0,1]F−1

Pif (ui)

Qif (ui)
Pij|f (ui)dui,−f =

∫
[0,1]F

Pif (ui)

Qif (ui)
Pij|f (ui)dui,

which yields

sj =

∫
RD

∫
[0,1]F

Pif (ui)

Qif (ui)
Pij|f (ui)fτ (τi)duidτi, (A20)

where D is the dimension of the random vector τi.

This latter formula is convenient because it shows how to estimate sj by Monte Carlo. We can

simply draw a random sample (ui, τi)
ns
i=1 jointly from their distribution and compute the Monte

Carlo estimate of sj as

s̃j =
1

ns

ns∑
i=1

[
Pif (ui)

Qif (ui)
Pij|f (ui)

]
.

Note that although ui is F -dimensional, we only use the (F − 1)-dimensional ui,−f to compute s̃j ,
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as equation (A20) also suggests, so there is a kind of redundancy of draws. The draw uif is used

for computing s̃r for products r belonging to firms rival to f .

Algorithm 1 (Importance Sampling) The algorithm consists of the following steps:

1. For each i = 1, . . . , ns draw ui ∼ U [0, 1]F and τi ∼ fτ ;

2. For each f ∈ F compute φif and Qif (ui); this implicitly determines the choice set Si0 ⊂

F\{f} of i as

Si0 = {g ∈ F\{f} : uig ≤ φig}

(note that the choice set for computing sj for j ∈ Gf will be {f}∪Si0, so always contains f);

3. For each f compute Pif (ui) assuming for the moment that
∑

S′∈S exp[miS′ ] is known;

4. For each j compute Pij|f (ui);

5. For each j compute s̃j.

In order to specify φif (θ), the first idea that comes to mind is to use the criterion that the two

sets of probabilities are proportional at the singleton subsets of firms {f}, f = 1, . . . , F , i.e.,

Qi{f}

Qi∅
=
Pi{f}

Pi∅
,

which implies that
φif

1− φif
= exp[mi{f}],

so

φif =
exp[mi{f}]

1 + exp[mi{f}]
=

exp[log(1 + exp[δif ])− difγi]
1 + exp[log(1 + exp[δif ])− difγi]

. (A21)

Simulation experiments based on these importance sampling probabilities show that they are not

satisfactory.

We can exploit more information on the structure of miS and incorporate it in the φ’s by using

the criterion that the two sets of probabilities are proportional at subsets of firms {f, g1, . . . , gH}

and {g1, . . . , gH} for f = 1, . . . , F . More precisely,

Qi{f,g1,...,gH}

Qi{g1,...,gH}
=
Pi{f,g1,...,gH}

Pi{g1,...,gH}
,
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which implies
φif

1− φif
= exp[mi{f,g1,...,gH} −mi{g1,...,gH}].

If we assume that this holds for all {f, g1, . . . , gH} ⊂ F we get that

φif
1− φif

= exp[mif,H ],

where mif,H denotes the mean of mi{f,g1,...,gH} −mi{g1,...,gH} over all {g1, . . . , gH} ⊂ F\{f} (this

implicitly assumes that gh 6= gk for all h 6= k, h, k = 1, . . . ,H). This yields

φif =
exp[mif,H ]

1 + exp[mif,H ]
, f = 1, . . . , F.

The number of terms involved in mif,H is the number of subsets of F\{f} having H elements,

that is, combinations

(
F − 1

H

)
. Intuitively, the larger the subsets {g1, . . . , gH} involved, the more

information on the structure ofmiS is captured by the φ’s. The computational burden for computing

the φ’s for large F and H is high, but they only need to be computed for the starting value of the

parameters.

We still need to find an estimator for Mi =
∑

S∈S exp[miS ], the denominator of Pif (ui). We

can again use importance sampling based on the probabilities {QiS}S∈S defined above. For this,

write

Mi =
∑
S∈S

QiS
exp[miS ]

QiS
=

∫
[0,1]F

mi(w)

Qi(w)
dw,

where

mi(w) = exp

log

(
1 +

∑
f∈F

1(wf ≤ φif ) exp[∆if ]

)
−
∑
f∈F

1(wf ≤ φif )t′ifγ

 ,
Qi(w) =

∏
f∈F

φ
1(wf≤φif )
if (1− φif )1(wf>φif ) with w = (w1, . . . , wF ).

The Monte Carlo estimator of Mi is

M̃i =
1

N

N∑
n=1

mi(wn)

Qi(wn)
,

where {wn}Nn=1 is a set of i.i.d. draws from the uniform distribution on [0, 1]F .

Some simulation experiments show that this Monte Carlo importance sampling estimator based
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on quasi-random samples works well for H = 3 and QiS = QiS(θ), that is, if we use the current

parameter values. It can fail in some cases for QiS = QiS(θ0) when the current parameter values θ

are far from the starting values θ0. Due to this it may be worthwhile to find good starting values

by minimizing the objective function through a large scale grid search where now the importance

sampling probabilities QiS(·) depend on the current value of θ.
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