
 

 

IESE Business School-University of Navarra - 1 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

A CHARACTERIZATION OF OPTIMAL BASE-STOCK LEVELS 
FOR A CONTINOUS-STAGE SERIAL SUPPLY CHAIN 

 

 

Peter Berling 

Víctor Martínez-de-Albéniz 

 

 

 

 

 
 

 

 

 

 

 
IESE Business School – University of Navarra 
Av. Pearson, 21 – 08034 Barcelona, Spain. Phone: (+34) 93 253 42 00 Fax: (+34) 93 253 43 43 
Camino del Cerro del Águila, 3 (Ctra. de Castilla, km 5,180) – 28023 Madrid, Spain. Phone: (+34) 91 357 08 09 Fax: (+34) 91 357 29 13 
 
Copyright © 2011 IESE Business School. 

 

Working Paper 

WP-905 

February, 2011 



 

 

IESE Business School-University of Navarra 

 

 
A CHARACTERIZATION OF OPTIMAL BASE-STOCK LEVELS 

FOR A CONTINOUS-STAGE SERIAL SUPPLY CHAIN 
 
 

 

  



since the 1960s. The structure of the optimal inventory policy is well-known when there are no

fixed ordering costs: it is an echelon base-stock policy, that depends on the problem parameters

(demand, costs). From the seminal work of Clark and Scarf [12], it is relatively easy to calculate

the optimal base-stock levels numerically. However, due to the complexity of the task, it is often

difficult to intuitively understand the result of the optimization. It is also hard to perform

sensitivity analysis on the optimal base-stock levels with respect to the model parameters.

Some alternative approaches to overcome these difficulties have been examined over the

years. In particular, Axsäter [2] observed that it was possible to decompose the traditional

formulation of the inventory problem as a set of sub-problems, each one of them corresponding

to a specific customer. In this paper, we apply this approach to provide some new results on the

multi-echelon problem, with the specific objective of understanding better the drivers behind

the optimal base-stock levels.

For this purpose, we consider a continuous version of the problem. Namely, we assume that

stages are continuous and that we consider continuous-review inventory controls. This means

that each inventory unit can be located in an infinite rather than finite set of positions. The

inventory manager can then decide to keep the unit where it is or move it towards the customer

at every moment. The cost of doing one action or the other depends on the location of the

unit. Of course, our continuous model can mimic any discrete system by making the appropriate

assumptions on costs, so it provides quite a bit of modeling flexibility. The assumption of having

continuous stages is also relatively realistic. Indeed, in practice there are a number of physical

locations where inventory can be placed. In today’s extended supply chains, such points span

almost the entire chain, and the decision to hold an item or ship it downstream can be taken

almost everywhere, except perhaps in long-haul maritime transportation.

Using this continuous setting, we provide a new formulation of the multi-echelon inventory

problem using the unit-decomposition approach. The optimization is expressed as an optimal

control problem, and the solution can be found by solving a differential equation, called the

Hamilton-Jacobi-Bellman equation. We characterize the structure of the optimal solution and

can provide in some cases a closed-form expression for the cost-to-go functions. This allows us to

understand better the drivers of the optimal stock levels and provides the basis for sensitivity

analysis. It also has the potential to generate some approximations that can be useful in

practice. Finally, our formulation provides a new solution procedure and new algorithms that

perform very well when costs are constant or linear (although in general solving the differential

equation can be very expensive computationally).

Thus, the paper contributes to the literature in several dimensions. First, it proposes a novel

approach to an old problem that is well studied and generates new insights on the structure of
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the solutions. Second, it characterizes the solutions explicitly when costs vary linearly over the

supply chain. Third, it proposes a new solution procedure that exploits the structure of the

problem in a new way, and performs quite well in the instances that we consider.

The rest of the paper is structured as follows. §2 reviews the literature relevant to our

work. §3 describes the continuous model and the formulation of the optimization problem. §4
characterizes the optimal inventory policy and provides an explicit recursive expression for the

cost-to-go function. We then study the sensitivity of the optimal solution to model parameters

in §5 and conclude in §6. The proofs are included in the appendix.

2 Literature Review

Our paper is closely related to the inventory management literature on multi-echelon systems.

Clark and Scarf [12] first introduced the notion of echelon-stock and showed that an echelon

base-stock policy is optimal in an finite periodic review problem if no fixed ordering costs are

present. Axsäter and Rosling [6] showed that the optimal echelon-stock policy derived by Clark

and Scarf [12] can be replaced by an equivalent installation-stock policy and they furthermore

established the conditions when this can be done. Federgruen and Zipkin [16] extended the

Clark and Scarf [12] result to an infinite horizon and Rosling [23] showed that the result is

also valid for an assembly systems. An alternative derivation can be found in Chen and Zheng

[10]. Several extensions to the original model exist, e.g., DeCroix et al. [14] who consider a

system with returns, Gallego and Zipkin [17] who consider stochastic lead-times, and Chen and

Song [9] who consider a time-varying demand process. Moreover, a number of approximate

approaches for near-optimal results under the original or more complicated assumptions have

been suggested over the years, see Clark and Scarf [13] or DeBodt and Graves [15] among

others. For thorough reviews see Zipkin [28], Axsäter [4] or van Houtum [26].

The present paper focuses on the same traditional problem, but uses a different approach,

the so-called unit decomposition approach, pioneered by Axsäter [2]. In a few words, this

approach uses the fact that in most systems, it is optimal not to cross orders. As a result, one

can account for costs unit by unit, instead of period by period, as the traditional literature

does. This allows to decompose the original problem into a set of sub-problems that can

be solved individually. Earlier papers in this line of work are Axsäter [3], who applies this

technique to batch ordering in a two-level system, or Graves [18], who finds the steady-state

distribution of inventory in a system with one depot and many sites. The solution approach has

been exploited by Muharremoglu and Tsitsiklis [21] to show that echelon base-stock policies

are optimal under general assumptions on lead-times. In comparison, the present paper uses
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this technique in a multi-echelon setting with the purpose of determining the structure of the

optimal echelon base-stocks and providing simple expressions for the optimal base-stock levels

and the corresponding cost-to-go functions. In addition, the following papers have also used the

technique. Muharremoglu and Tsitsiklis [22] find optimal expediting decisions. Janakiraman

and Muckstadt [19] characterize the structure of the optimal policy for capacitated two-echelon

systems. In a single echelon context, Mart́ınez-de-Albéniz and Lago [20] show that myopic

policies are optimal for a general class of non-stationary, correlated demand processes. Yu and

Benjafaar [27] show that echelon base-stock policies are optimal with non-stationary, correlated

demands and lead-times. Berling and Mart́ınez-de-Albéniz [7] determine the optimal base-stock

levels in a single-echelon system with stochastic purchasing price.

Some researchers have studied continuous multi-echelon systems, as we do here. Song and

Zipkin [25] analyze a continuous-stage, continuous-demand inventory problem. They use the

traditional approach of cost accounting period by period and obtain closed-form solutions when

they set the costs appropriately. Most similar to our work is Axsäter and Lundell [5], that

formulate the optimization problem with monotonic holding costs and no moving costs, and

report some numerical results in a continuous-stage, discrete-demand setting. In contrast, we

provide the general structure of the solution, including some explicit expressions for the cost-

to-go functions in some cases. Finally, it is worth mentioning that, in a companion paper, The

Authors [1] focus on optimal expediting decisions using the same continuous-stage, discrete-

demand model as here.

3 A General Model for a Continuous-Stage Serial Supply Chain

3.1 Model Setting

Consider the following standard multi-echelon inventory problem. A manager is in charge of

managing the inventory in a serial supply chain. Inventory can be obtained from an upstream

location (the highest echelon), and is shipped downstream in order to fulfill the demand (oc-

curring at the lowest echelon). There are costs involved in shipping the inventory, holding the

inventory, and in failing to fulfill the demand on time. The manager’s objective is to minimize

the expected sum of these three costs.

We focus on a supply chain that has continuous stages and where one as a result will make

continuous-review decisions. That is, at any point in time, each inventory unit located in the

chain can be either moved downstream towards lower echelons, or otherwise kept in the same

location for a little bit longer. The resulting system is one where there are a number of units
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spread out over the supply chain, some being moved and others not. The system we have in

mind is a production/distribution system where a unit is moved closer to the consumer when

it is being processed and one can at any time choose to stop processing that unit. However,

by choosing the cost parameters intelligently, one can mimic most serial supply chains, e.g., a

standard serial system with a number of warehouses to which the units are successively moved.

We index each stage through its position x ∈ [0, L], which denotes the “distance” to the

downstream customer, i.e., the time it takes to ship a unit from x to 0, measured for example

in days of transportation. That is, x = 0 is the location immediately next to the customer,

while x = L is the upstream location, where an infinite amount of raw material is available.

We assume that customers arrive at random times, and in particular that demand is Poisson

distributed with a constant intensity λ (i.e., inter-arrival times are i.i.d., exponentially dis-

tributed). The methodology can be extended to any renewal process, though. All demand

that cannot be met immediately from stock on hand (located at x = 0) is back-ordered until

more goods are available at this location. There is fixed back-order cost b > 0 per time-unit

per back-ordered unit. The other costs considered are out-of-pocket holding costs h(x) ≥ 0

for 0 ≤ x ≤ L, and “moving” costs m(x) ≥ −h(x) for 0 < x ≤ L (if the item is moved, zero

otherwise; the item cannot be moved further at x = 0), both per time-unit and per unit. All

costs are discounted with a continuous discount rate of r > 0. The moving cost m(x) can be

interpreted as the value added to the product as it moves forward through the production pro-

cess. While we do not explicitly include the capital cost of holding inventory in h(x) (only the

out-of-pocket holding cost), this capital cost is indirectly incorporated through the payment of

m(x): it is approximately equal to r
∫ L
x m(y)dy per time unit, where

∫ L
x m(y)dy is the amount

of cost that has been incurred until that moment. For simplicity, and in coherence with the

assumption that the position x is measured in time units, we assume that the speed at which

items travel along the supply chain is equal to one distance-unit per time-unit. In fact, it is

possible to consider variable moving speeds, as in the companion paper The Authors [1].

Note that both the holding cost, h(x), and moving cost, m(x), can be stage-dependent.

Hence, by choosing them carefully (and possibly relaxing the conditions of no negative costs

posed for the “true” costs), one can mimic most serial supply chains. Consider for example the

traditional serial supply chain with three physical locations where inventory can be held: an

upstream one (the supplier at x = L), an intermediate one (a distribution center at x = D)

and a downstream one (a store at x = 0). In our model, this system can be represented by

choosing
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h(x) =



0 if x = L

hD +M if D < x < L

hD if x = D

hS +M if 0 < x < D

hS if x = 0

and

m(x) =


0 if x = L

mD −M if D < x < L

mD if x = D

mS −M if 0 < x < D

where M is a large constant. Clearly, if M is large enough, the manager will always choose

to move the item when x ̸= D,L. It is indeed only reasonable to keep units in storage at

the warehouses and units that are in between warehouses will be moved down to the nearest

downstream warehouse (or maybe even further) as quickly as possible. Also, the effective

holding cost is equal to hD if D ≤ x < L and to hS if 0 ≤ x < D. Of course, there exist other

alternatives that provide the same solution. For example one can include the actual moving

cost in the holding cost and set m(x) = 0, so that the holding cost at the downstream location

is smaller than the holding plus the moving cost between it and the upstream location.

The setting presented can be seen as an extension to Axsäter and Lundell [5]. The most

significant difference between our model and theirs is that we have no restrictions on the

holding cost apart from it being non-negative (in theirs it had to be increasing with x) and that

the moving cost m(x) also can depend on x and thus becomes a key driver of the inventory

decision. Other recent work with continuous supply chains is Song and Zipkin [25], who assume

that the holding cost is decreasing in x and consider zero moving cost m(x). Another difference

between our work and the ones cited above is that we focus on a discounted cost model whereas

they consider average cost models. This minor change makes the formulation of the solution

procedure much simpler. It allows us to characterize the optimal policy and derive closed-form

solutions for some general problems.

3.2 The Formulation using the Unit-Decomposition Approach

In order to formally present the optimization problem, we use an observation that will simplify

the exposition.

Lemma 1. There exists an optimal policy such that units in the supply line never cross.
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This allows us to use the dynamic program formulation based on the single-unit tracking

approach put forward by Axsäter [2]. This approach can indeed be used since order crossing is

not optimal, all unmet demands are back-ordered and all costs are independent of what unit

we are considering (they are linear per time-unit, per unit). The idea of single-unit tracking

approach is to follow each item from the time it enters into the system (i.e., when it is ordered

at x = L) until it exits (i.e., when it is used to satisfy customer demand at x = 0). One can

hence monitor the cost associated with that unit and try to minimize the expected present

value of this cost. This differs from the more traditional approach where one instead focuses on

the inventory level, monitors its distribution and tries to minimize the expected cost associated

with the evolution of this distribution.

Specifically, we define the cost-to-go function for unit k when it is located at x, denoted

Jk(x), as follows. Unit k is identified as the unit that will be used to serve the k-th next

customer. That is, if there is currently a backlog of B customers waiting to be served, then it

is the (k + B)-th unit of inventory in the chain, when ordering units in increasing order of x

(i.e., it is the unit that will arrive to x = 0 in position k +B). Hence, we enumerate k so that

1 is the demand from the first customer that will arrive to the system counting from now and

2 the demand from the second customer counting from now, and so on. Consequently, k ≤ 0

implies that unit k will be used to satisfy a demand that has already occurred. Figure 1 shows

how the units are enumerated when there are B = 3 customers waiting for a product (if there

are no customers waiting then the units will be enumerated 1, 2, 3, etc.).

Figure 1: An example of a continuous supply chain. The x-axis represents the distance of each inventory

unit from the customer. Each circle represents a unit of inventory. The number associated with its unit

can be negative if the unit will serve a customer that has already arrived (there are B = 3 of them), or

positive in which case it denotes the rank of the (future) customer to whom it will go.

Jk(x) is defined as the minimum expected net present value of all back-order, holding and
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moving costs payed from now until that unit has been used to satisfy a demand from a customer.

It of course depends upon where the unit is currently located, x, and what demand, measured

by its rank k, it shall fulfill. For example, for k ≤ 0, Jk(x) is the net-present value of all

back-order costs paid until that unit reaches the final customer plus all the moving and holding

cost occurred while it is moved from stage x to stage 0. Note that in this case, the cost-to-go

function Jk(x) is identical for all k ≤ 0, and for simplicity we will denote all these with J0(x).

They can be expressed as:

J0(x) =

 0 if x = 0

min
v∈{0,1}

{(
b+ h(x) + vm(x)

)
∆+ J0(x− v∆)e−r∆

}
otherwise

(1)

where ∆ is a short time interval.

If the demand has not occurred, i.e., k ≥ 1, then the future costs depend upon when the

customer arrives to the system and where the unit is at that moment. Since the demand is

generated from a Poisson process, the time until the customer arrives is Erlang distributed with

rate λ and index k, see e.g. Axsäter [2]. For the formulation here we only need to know that

in a short time interval ∆, the probability of one customer arriving to the system is λ∆ and

the probability of more customer arrivals is negligible, though. If a customer arrives, then the

cost-to-go to be considered is the one corresponding to the (k−1)-th unit, rather than the k-th

unit. The cost-to-go function can thus be expressed as

Jk(x) = min
v∈{0,1}

{(
h(x) + vm(x)

)
∆+

(
(1− λ∆)Jk(x− v∆) + λ∆Jk−1(x− v∆)

)
e−r∆

}
(2)

Of course, the derivation of Equations (1) and (2) is presented with a discrete formulation,

with time increments of ∆. In reality, in a truly continuous-stage system, Jk(x) satisfies a

differential equation, called the Hamilton-Jacobi-Bellman (HJB) equation. The technical details

from the continuous system are taken from optimal control theory, see Bertsekas [8]. The HJB

equations can be written as

0 = min
v∈{0,1}

{
v

(
m(x)− dJ0

dx

)
+ b+ h(x)− rJ0(x)

}
(3)

and for k ≥ 1,

0 = min
v∈{0,1}

{
v

(
m(x)− dJk

dx

)
+ h(x) + λJk−1(x)− (λ+ r)Jk(x)

}
(4)

Equations (3)-(4) are the counterparts of Equations (1)-(2) for the continuous-stage chain.

Denote v∗k(x) the optimal control for unit k at location x.
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The equations imply that it is optimal to move unit k forward, i.e., v∗k(x) = 1, if and only

if m(x) ≤ dJk
dx

, in which case

dJ0
dx

= b+ h(x) +m(x)− rJ0(x) and for k ≥ 1,
dJk
dx

= h(x) +m(x) + λJk−1 − (λ+ r)Jk. (5)

Otherwise, v∗k(x) = 0 and

J0(x) =
b+ h(x)

r
for x > 0 and Jk(x) =

h(x) + λJk−1(x)

r + λ
for k ≥ 1 and x ≥ 0. (6)

If v∗0(x) = 0 then no units at this location will be moved. As a result, if all units have to

pass x to reach the end consumer then it will be optimal to never satisfy any demand using

units that are located at x or further away. In essence, such a result implies that the cost of

moving the unit from x or beyond to the consumer is higher than the cost of never servicing

the customer. Hence, for the model to be realistic, L must be smaller than the smallest x

where v∗0(x) = 0. For completeness, we have the terminal condition J0(0) = 0. Together, the

equations above can provide a powerful scheme to obtain the optimal policy in many settings,

as shown in the next section.

4 General Solution Procedure

In this section we will derive simple closed-form solutions for the optimal policy under various

specific cost structures and provide a general procedure to find the solution under a general

cost structure. We start by looking at the simplest case where the holding and moving costs

are constant. We then analyze the case where they are linearly variable in x. Finally, we

consider piece-constant costs, which can approximate general cost functions. We recover from

the results that the optimal policy is an echelon base-stock policy, as shown by Muharremoglu

and Tsitsiklis [21]. However, in contrast with most of the previous literature, we show that

the optimal base-stock level is not necessarily increasing with x and the optimal steady-state

policy will hence depend on L, i.e. the total distance to move a unit, as well.

4.1 Constant Costs

A constant cost model is obtained by setting h(x) = h and m(x) = m for all x, with h and m

constant. For k = 0, it is simple to verify that J0 can be expressed as

J0(x) =


(b+ h+m)

(
1− e−rx

r

)
if e−rx ≥ m

b+ h+m
b+ h

r
otherwise.

(7)
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using Equations (5)-(6) and the border condition J0(0) = 0.

As a result, it is optimal to move the unit forward if and only if x ≤ xH0 where

xH0 =
1

r
ln

(
1 +

b+ h

m

)
(8)

The result is intuitive: if the cost of moving the item is large, it is better to pay the holding

and back-ordering costs indefinitely rather than incur the expense of moving the item. In that

sense, if the upstream echelon is too “far” from the customer, i.e., e−rL <
m

b+ h+m
, then the

manager simply chooses not to fulfill demand at all. Otherwise, it is optimal to ship the item

downstream.

For k ≥ 1, it turns out that the optimal decision is to move the unit if and only if x is

within an interval [xLk , x
H
k ]. Note that this is also true for k = 0 as well, with the lower bound

of the interval being equal to xL0 = 0. The optimal policy under this setting is expressed in the

following theorem.

Theorem 1. Constant costs. There exists a sequence of non-decreasing xLk ≥ 0 and non-

increasing xHk ≥ 0, such that it is optimal to set v∗k(x) = 1 if and only if xLk ≤ x ≤ xHk .

This result is non-trivial. Indeed, it turns out that Jk is first convex and then concave. The

proof relies on showing that
dJk
dx

is first increasing and then decreasing (quasi-concave). While

the proof is quite specific to the assumptions of constant costs, it can be extended to more

general settings, as we will see later.

The thresholds xLk , x
H
k identified in the theorem completely characterize the optimal echelon

base-stock levels.

Corollary 1. The optimal echelon base-stock level at stage x is S if xLS ≤ x < xLS+1 or

xHS+1 < x ≤ xHS .

The corollary above implies that the optimal policy is an echelon base-stock policy where

the base-stock level, S(x) is first non-decreasing in x as xLk is non-decreasing in k; it is then

non-increasing in x as xHk is non-increasing in k. Note however that, in steady state, there will

be no units launched from the factory with index larger than S(L). Thus, in practice, even

though at some x < L the optimal echelon base-stock level might be strictly larger than S(L),

there will be no unit to be effectively moved. Thus, for any practical purpose, another set of

base-stock levels that is non-decreasing in x may lead to the same inventory/shipping decisions,

and hence to the same cost. In other words, they are also optimal. These two sets of echelon

base-stocks are illustrated in Figure 2. In the figure, we can observe that is optimal to move

inventory downstream in the bottom center region. It can be seen that for a given unit k, it is
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optimal to move the item if and only if xLk ≤ x ≤ xHk . For example for k = 5, the unit should

be moved when xL5 = 4.17 ≤ x ≤ xH5 = 5.31. For k ≥ 6, xLk = ∞ and xHk = 0, which implies

that the item should not be moved, i.e., v∗6(x) = 0 for all x, until a demand occurs and its rank

change.
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Figure 2: Optimal echelon base-stock levels S(x) as a function of the stage x, with b = 10, h = 1,m = 10,

and b = 10, r = 0.1, λ = 1.

It is worth noting that the traditional multi-echelon literature usually implies that the op-

timal echelon base-stock is non-decreasing as one moves upstream in the supply chain. In

contrast, Corollary 1 reveals that it is possible that it decreases as one moves upstream. How-

ever, as earlier pointed out, in steady-state this is a possibility that never occurs, and hence

a non-decreasing base-stock is also optimal. For instance, in Figure 2, if L = 6, S(L) = 4,

and as a result, one will never see a 5-th unit in the supply chain (despite having xL5 = 4.17

and xH5 = 5.31, finite). Nevertheless, our result implies that there is a dependency between

the upstream economics that determine S(L), and the optimal base-stocks downstream. This

implies that one cannot, generally, solve the problem by just finding the lower bound where a

unit is stopped, xLk , but one must also find the upper bound where a unit is launched, xHk .

The key to finding the optimal policy is hence to find the threshold values xLk and xHk . In

doing so, one can use the cost-to-go functions which can be determined from the following

theorem.
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Theorem 2. Constant costs. The cost-to-go functions Jk can be expressed as

Jk(x) =



h+ λJk−1(x)

r + λ
if 0 ≤ x ≤ xLk

Mk −Nke
−rx +

(
k−1∑
i=0

Ak,ix
i

)
e−(r+λ)x if xLk ≤ x ≤ xHk

h+ λJk−1(x)

r + λ
if xHk ≤ x

where Mk =
h+m

r
+

b

r

(
λ

λ+ r

)k

, Nk =
b+ h+m

r
, Ak,i =

λAk−1,i−1

i
for i ≥ 1, and Ak,0

such that Jk is continuous at x = xLk .

The cost-to-go functions are hence easy to calculate when holding and moving costs are

constant. Knowing them allows to calculate the thresholds easily. Indeed, given Jk−1, x
L
k is

determined as the first x that fulfills
λ

r + λ

dJk−1

dx
= m which is numerically straightforward.

Once xLk and hence Jk
(
xLk
)
is known, one can use standard calculus to determine Ak,0. The

only unknown that remains then is xHk , i.e. the first x > xLk where again
dJk
dx

, corresponding

to the solution to the HJB equation, is equal to m. Note that at this point
dJk
dx

might be

discontinuous because
λ

r + λ

dJk−1

dx
might be strictly less than m. This search can be simplified

by using the fact that xLk ≤ xHk ≤ xHk−1. Finally, it should be noted that the first part of the

procedure above that describes how to find xLk and Ak,0 is only valid for k > 1. For k = 0, we

have already shown that xL0 = 0 and A0,0 = 0. For k = 1, the value of xL1 is either 0 or infinity

as
dJ0
dx

is decreasing and A1,0 can be found by using the border condition that J1(0) =
h

r + λ
.

Figure 3 illustrates the value of
dJk
dx

associated with the optimal policy from Figure 2. Note

that the points at which
dJk
dx

= m determine the thresholds xLk , x
H
k , see Figure 2.

4.2 Linear Costs

4.2.1 Linear Holding Costs

The results from §4.1 can be extended quite easily to situations where the holding cost is linearly

increasing or decreasing with x. The proof is outlined below and follows the proof of Theorem

1. Consider h(x) = h0 + h′x. To make the model reasonable, we assume that h(x) > 0 for all

x ∈ [0, L], which implies that h0 > 0 and L < −h0/h′ if the right-hand side is positive. We also

assume that m ≥ h′

r
; otherwise, it would always be better to move the item towards x = 0 in

order to save inventory costs, which would result in v∗k(x) = 1 for all k, x > 0.
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Figure 3:
dJk
dx

as function of x, with b = 10, h = 1,m = 10, and b = 10, r = 0.1, λ = 1.

The cost-to-go function for k = 0 is then

J0(x) =



∫ x
0 (b+m+ h0 + h′(x− z))e−rzdz =(
b+m+ h0 − h′

r

)
1− e−rx

r
+

h′x

r
if e−rx ≥ m− h′/r

m+ b+ h0 − h′/r
b+ h0 + h′x

r
otherwise.

The expression is very similar to Equation (7) but here takes into account the linear holding

cost. The derivation relies on it always being optimal to move a demanded unit all the way to

the customer, if it has been moved at all, which can be easily verified.

As is the case with constant costs
dJ0
dx

will be quasi-concave. Indeed, because
h′

r
≤ m+b+h0,

it is first decreasing down to m and then constant (there is a jump downward at xH0 . We can

similarly show quasi-concavity of
dJk
dx

for k ≥ 1. This leads to the following theorem.

Theorem 3. Linear holding costs. When h(x) = h0 + h′x, there exists a sequence of non-

decreasing xLk ≥ 0 and non-increasing xHk ≥ 0, such that it is optimal to set v∗k(x) = 1 if and

13



only if xLk ≤ x ≤ xHk . The corresponding cost-to-go functions Jk can be expressed as

Jk(x) =



h(x) + λJk−1(x)

r + λ
if 0 ≤ x ≤ xLk

Mk −Nke
−rx +Bkx+

(
k−1∑
i=0

Ak,ix
i

)
e−(r+λ)x if xLk ≤ x ≤ xHk

h(x) + λJk−1(x)

r + λ
if xHk ≤ x

(9)

where Mk =
h0 +m− h′

r

r
+

b

r

(
λ

λ+ r

)k

, Nk =
b+ h0 +m− h′

r

r
, Bk =

h′

r
, Ak,i =

λAk−1,i−1

i
for i ≥ 1, and Ak,0 such that Jk is continuous at x = xLk .

One can observe the similarity of this result with Theorems 1 and 2. Again, the cost-to-go

functions can be calculated with this simple procedure, using that xLk is determined by

d

dx

(
h(x) + λJk−1(x)

r + λ

)
= m. (10)

4.2.2 Linear Moving Costs

When the holding cost is constant and the moving cost is linear, the structure identified in

§4.1 continues to exist, even though the analysis is not as easy as for the linear holding cost

case for a number of reasons. Mainly, it is not sufficient that
dJk
dx

is first increasing and

then decreasing (quasi-concave), because m(x) is evolving as well, and hence
dJk
dx

(x) and m(x)

can cross more than twice even if the former is quasi-concave. Instead, we have to consider

Fk(x) =
dJk
dx

(x) − m(x). If this function is above 0 then it is optimal to move the unit and

otherwise it is not. Unfortunately, this function Fk(x) is not quasi-concave on the entire range,

but it can be shown that it is quasi-concave for xLk ≤ x ≤ xHk−1 which is sufficient to guarantee

the same structure of the optimal policy as the one described in §4.1.
We define m(x) = m0 +m′x. To make the model reasonable, we assume that m(x) > 0 for

all x ∈ [0, L]. The following theorem provides the extension of Theorems 1 and 2 to this case

Theorem 4. Linear moving costs. When m(x) = m0 + m′x, there exists a sequence of

non-decreasing xLk ≥ 0 and non-increasing xHk ≥ 0, such that it is optimal to set v∗k(x) = 1 if

and only if xLk ≤ x ≤ xHk . The corresponding cost-to-go functions Jk can be expressed as

Jk(x) =



h+ λJk−1(x)

r + λ
if 0 ≤ x ≤ xLk

Mk −Nke
−rx +Bkx+

(
k−1∑
i=0

Ak,ix
i

)
e−(r+λ)x if xLk ≤ x ≤ xHk

h+ λJk−1(x)

r + λ
if xHk ≤ x

(11)
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where Mk =
h+m0 − m′

r

r
+

b

r

(
λ

λ+ r

)k

, Nk =
b+ h+m0 − m′

r

r
, Bk =

m′

r
, Ak,i =

λAk−1,i−1

i
for i ≥ 1, and Ak,0 such that Jk is continuous at x = xLk .

The proof of this result is quite different from the one of Theorem 3. However, it can be

observed that the resulting expressions in Equation (11) have the exact same recursive form as

the ones in (9), where h′ is replaced by m′. One could think that the optimal policy would be

the same if h′ = m′. However, this is not so. Although the recursion is the same, the values

obtained for xLk are not the same, since the conditions for determining them are different. With

linear moving costs, the condition is

d

dx

(
h+ λJk−1(x)

r + λ

)
= m(x).

instead of Equation (10). As a result, this changes the values of Ak,0, which results in different

coefficients Ak,i.

4.3 Piecewise Constant Costs

Theorems 3 and 4 show that the structure of the problem remains the same as with constant

costs when either holding or moving costs are linear. When there are general nonlinearities, the

analysis quickly becomes intractable. In this section, we focus on the particular case of piecewise

constant costs. This case is particularly interesting as it can provide an approximation for any

holding and moving cost. Furthermore, such scenario is a good approximation of real supply

chains. Indeed, inventory and production/distribution costs are locally stable and typically

only exhibit changes at certain points. For instance, if we consider the supply chain of a

shoe manufacturer, the inventory cost is relatively constant before manufacturing and after

manufacturing; the cost of moving an item closer to the point of sales is also relatively constant,

before the factory (e.g., shipping by truck), between factory and local distribution center (e.g.,

shipping by boat), and between local distribution center and store (e.g., shipping in a delivery

van).

Before proceeding to the analysis, note that since now costs are discontinuous, then Jk

might not be continuous. At the points of discontinuity, Equation (5) might not even be

defined since the derivative may not exist. However, it is possible to still use Equations

(3) and (4) everywhere except at the points of discontinuity. At the points of disconti-

nuity, Equations (3) and (4) can be replaced with J0(x) = min

{
J0(x

−),
b+ h(x+)

r

}
and

Jk(x) = min

{
Jk(x

−),
h(x+) + λJk−1(x

+)

λ+ r

}
for k ≥ 1 where x− denotes the vicinity of x
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just before the change (limit below x) and x+ just after it (limit above x). Hence the resulting

cost-to-go functions Jk can only have jumps down.

As one can imagine, the structure derived above does not necessarily hold anymore. Since

now there are several “regions” with different economics, there might exist more than one region

where it is optimal to move the unit that shall satisfy the k-th demand. However, we can derive

useful results to find the optimal policy and to describe the cost associated with this policy.

To illustrate the difficulties when costs are piecewise constant, consider the case where there

is z1 = 0 ≤ z2 such that

h(x) =

{
h1 when z1 = 0 ≤ x < z2

h2 when z2 ≤ x

and

m(x) =

{
m1 when z1 = 0 ≤ x < z2

m2 when z2 ≤ x

We use the variable yi = x − zi rather than x and the cost-to-go function J i
k(y

i) expressed in

this variable when x ∈ [zi, zi+1), i.e., Jk(x) = J i
k(y

i). We start with the decision for k = 0.

Using a reformulated version of Equations (5) and (6), it can be shown that

J i
0(y

i) =


M i

0 −N i
0e

−ryi if moved, i.e., if e−ryi ≥ mi/r

N i
0

b+ hi

r
otherwise.

where M i
0 =

b+ hi +mi

r
and N i

0 are such that the border condition J1
0 (0) = 0 and J2

0 (0) =

J1
0 (z

2 − z1) is fulfilled. We already see that, if z2 is large enough and h2 > h1, it is possible

that v∗0(x) = 1 if and only if xL,10 = z1 = 0 ≤ x ≤ xH,1
0 < z2 or xL,20 = z2 ≤ x ≤ xH,2

0 . As a

result, it is not optimal to move this item only in one interval, but in two. This shows that the

structure identified in Theorems 1, 3 and 4 is not preserved.

More generally, let us denote the locations where the holding and/or moving cost changes

z1 = 0, z2, . . .. The corresponding costs in the segment [zi, zi+1) are denoted h1, h2, . . . and

m1,m2, . . ., respectively. Note that it is possible that mi = mi−1 if it is only the holding cost

that changes at location zi, or hi = hi−1.

With this notation, we can show that
dJ0
dx

thus quasi-concave in the segment x ∈ [zi, zi+1).

Continuing along the lines of the proof of Theorem 1, this observation can be extended to k ≥ 0:
dJ i

k

dyi
is quasi-concave in its range. The following theorem shows the structure of the resulting

optimal policy.
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Theorem 5. Piecewise constant costs. For each i = 1, 2, . . ., there exists a sequence of

non-decreasing xL,ik ≥ 0 and non-increasing xH,i
k ≥ 0, such that, for zi ≤ x < zi+1, it is optimal

to set v∗k(x) = 1 if and only if xL,ik ≤ x ≤ xH,i
k .

Unlike before with constant costs, the theorem shows that there might exist several regions

where it is optimal to move the goods. Some conclusions can be drawn, though.

First, if the holding cost does not change, i.e., hi−1 = hi, and if v∗k
(
(zi)−

)
= 1, then

v∗k
(
(zi)−

)
= v∗k

(
(zi)+

)
= 1. This is true because the jump in

dJk
dx

is the same as the jump in

m at zi, and hence
dJk
dx

−m is smooth at zi (so the optimal decision at (zi)− is the same as

at (zi)+). However, if v∗k
(
(zi)−

)
= 0, then it might be optimal to move it at (zi)+ even if it is

not optimal to do so at (zi)− if the moving cost decreases, but not if it increases. This is true

because the change in
dJk
dx

(
(zi)−

)
=

λ

λ+ r

dJ i
k−1

dyi
is smaller than the change in m at zi and

thus might be smaller than mi in the former but not the later case.

Second, if it is the holding cost that changes but not the moving cost, then one might go

from a move to a no-move decision, i.e., from v∗k
(
(zi)−

)
= 1 to v∗k

(
(zi)+

)
= 0, if hi−1 < hi, but

never the opposite. Vice-versa it may go from v∗k
(
(zi)−

)
= 0 to v∗k

(
(zi)+

)
= 1 if hi−1 > hi,

but never the opposite. Indeed, the changes in h will be reflected in the value of
dJk
dx

, directly

if v∗k((z
i)−) = 1, or indirectly through the change in

dJk−1

dx
if v∗k((z

i)−) = 0.

The policy identified in Theorem 5 is still similar to the one described in Corollary 1.

It is illustrated in Figures 4 and 5. The figures use identical cost parameters in the range

z1 = 0 ≤ z ≤ z2 = 6, which are the same costs as for Figure 2. Inventory costs are low

compared to moving costs. As a result, since deferring the moving expense reduces the present

value of that expense, the inventory levels are relatively low.

On the other hand, in the range z2 = 6 ≤ x, Figure 4 considers a situation where inventory

costs are much higher. It is hence worth incurring the moving expense in order to take the

inventory to the low-cost echelons, where they can be maintained cheaply. In the figure we also

show the corresponding
dJk
dx

. We note that regardless of k,
dJk
dx

((z2)+) > m, which implies that

in the vicinity of z2 = 6, it is always optimal to move a unit, which suggests that S((z2)+) = ∞.

In fact, one can show that when (m2 + h2)

(
1− e−r(x−z2)

r

)
+ h1

(
e−r(x−z2)

r

)
≤ h2

r
, i.e., it is

cheaper to move the unit downstream to z2 and then hold forever, rather than hold forever at

x > z2, then S(x) = ∞.

In contrast, Figure 5 considers in the range z2 = 6 ≤ x much lower moving costs. Thus

the incentive to move the items downstream (so that they are available to customers sooner) is

increased. As a result, the inventory levels, which where decreasing before z2, start increasing
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again as one moves upstream: for instance, S(8) = 6, which is larger than the highest echelon

base-stock level for x ≤ z2, 5. In this case, compared to Figure 4, the base-stock levels remain

finite. In particular, S((z2)+) < ∞. Indeed, one can see in the corresponding
dJk
dx

that, while

both m and
dJk
dx

exhibit a jump down at z2, if
dJk
dx

−m was positive at (z2)−, it stays positive

at (z2)+, as we mentioned above.

4.4 General Cost Structures

In the general case, as seen in the previous section, the regions where v∗k(x) = 1 might not

be intervals. The procedure outlined above can still be used to solve Equations (3) and (4).

Namely, one can find the optimal control v∗k for k = 0 first, then for k = 1, and so on. For a

given k, the procedure would be the following.

1. Calculate JN
k identified by Equation (6).

2. Let Ak = {x|v∗k−1(x) = 1}, which is made by a union of intervals [xL,ik−1, x
H,i
k−1]. We know

that if x /∈ Ak, then v∗k(x) = 0, because at optimality orders do not cross.

3. Take an interval i. We know that
dJN

k

dx
(xL,ik−1) < m(xL,ik−1), which implies that v∗k(x

L,i
k−1) = 0.

Find the lowest x > xL,ik−1 such that
dJN

k

dx
(x) = m(x), which we denote xi1,Lk . Hence for

x < xi1,Lk , we know that v∗k(x) = 0. After this point, solve Equation (5) until again

dJN
k

dx
(x) = m(x), which occurs at xi1,Hk . In [xi1,Lk , xi1,Hk ], v∗k(x) = 1. After xi1,Hk , find

the next lowest x > xi1,Hk such that
dJN

k

dx
(x) = m(x): this determines xi2,Lk . Repeat the

procedure above to find xi2,Hk , xi3,Lk , xi3,Hk , . . . until we reach xH,i
k−1.

4. Repeat the step above for all intervals i, at which point we have determined v∗k for all x.

This procedure is quite simple. However, it requires solving the differential HJB equation,

Equation (5), which may be difficult if the functions h or m are complex. In the cases where

these functions h and m are simple, e.g., polynomials, one can pre-compute the structure of

the solutions of the differential equations, and hence the procedure in fact only involves finding

the appropriate constants for the generic family of solutions to Equation (5). This shortcut is

similar to the analytical expression of Jk derived in Theorems 2, 3 and 4. Computationally,

the procedure was quite fast in all the instances that we used. However, for more complex

structures of h and b, solving the differential equation numerically might be quite slow.
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5 Impact of Costs on Inventory Placement

In this section, we are interested in using our analytical results to understand the relationship

between costs and inventory levels. We first derive some analytical sensitivity results, and then

complement these with an extensive numerical study.

5.1 Sensitivity Results

In order to derive analytical sensitivity results, we focus here on the constant cost scenario.

Theorem 6. For h(x) = h,m(x) = m, for all k, xLk is non-increasing in b, h and non-decreasing

in m; xHk is non-decreasing in b, h and non-increasing in m.

The theorem derives how the thresholds xLk , x
H
k change with the model parameters. It is

quite valuable since in most multi-echelon models sensitivity results are analytically intractable,

and are only solved numerically. In contrast, our approach focuses on each unit separately, and

this would allows us to determine how the thresholds vary. The same proof would even allow

us to approximate the variation of the thresholds given parameter changes.

The insights of the theorem are quite intuitive. The impact of a higher back-ordering cost

b is to increase inventory levels. The impact of a higher holding cost h is also to increase

inventory levels. This might seem surprising, since for instance in the newsvendor model, the

base-stock level decreases with h. However, one must keep in mind that, with constant costs,

the inventory cost is paid regardless of the stage where the inventory is placed. As a result, as

h increases, there is an incentive to sell the inventory quicker, which can be done by shifting

more inventory downstream. In contrast, in the newsvendor model one only charges inventory

costs at the lowest echelon. Finally, the impact of higher moving costs m is to reduce inventory

levels. This is true because, when moving costs are higher, it is better to defer the moving

expense (by doing so, the expense is discounted), and hence the inventory in the chain becomes

smaller.

5.2 Numerical Experiments

We next illustrate numerically how the placement of inventory in the supply chain changes with

costs. In particular, we explore how the thresholds change when costs are non constant, first

for linear costs and then for piecewise-constant costs.

Figure 6 shows how the variation of h over the supply chain changes the echelon base-stock

levels, which we represent through the thresholds xLk , x
H
k . The figure considers a linear holding

cost h(x) = h0 + h′x, for which Theorem 3 shows that the thresholds are unique.
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of the holding cost h0 is chosen so that h(5) = 1 and the rest of the parameters are b = 10,m = 10, and

r = 0.1, λ = 1.

As can be seen from the figure, an increase in h′ implies larger inventory levels. In other

words, the region where unit k should be moved is wider, for all k. For h′ > 0 this is not at

all surprising because, by moving a unit closer, one can reduce the holding cost as well as the

expected future back-order cost which makes up for the fact that one has to pay the moving

cost. The reduction in expected back-order cost is independent of the holding cost whereas

the reduction in holding cost of course is increasing with h′. Thus, the higher h′ is, the more

beneficial it is to move a unit and this is true even if h′ < 0 and thus the intuition behind the

argument carries over to these values as well.

Figure 7 shows how the variation ofm changes the thresholds xLk , x
H
k , usingm(x) = m0+m′x.

We can see that a decrease in m′ reduces the inventory levels. This can be explained by the

fact that for x < 5, a reduction in m′ makes it more expensive to move the unit closer to

the end consumer, and hence it is preferable to defer this cost to later, thereby reducing the

echelon base-stock. This effect carries over to x > 5, because the sum of all future moving

costs is decreasing with m′, which diminishes the incentive of moving the unit, and reduces the

inventory levels.

We now illustrate how the piecewise constant cost structure affects the optimal base-stock

levels. For this purpose, we focus on the example shown in Figures 4 and 5, with z1 = 0, z2 = 6,

and base parameters b = 10, h1 = h2 = 1,m1 = m2 = 10.

Figure 8 shows how the base-stock levels change with the value of h2, keepingm2 = m1 = 10.

It clearly shows that xH,2
k are non-decreasing in h2, which is in line with the findings in Theorem
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6. In addition, we can see that when h2 ≤ h1, then it not optimal to move units of rank 5 or

higher for x ≥ z2 = 6 so the optimal base-stock level stays below S((z2)−) = 4. As soon as

h2 > h1, then the base-stock level at (z2)+ shoots up to infinity. As discussed after Figure 4,

we can show that S(x) = ∞, when (m2 + h2)

(
1− e−r(x−z2)

r

)
+ h1

(
e−r(x−z2)

r

)
≤ h2

r
. In

other words, for all k, xH,2
k − z2 ≥ 1

r
ln

(
1 +

h2 − h1

m2

)
.

Similarly, Figure 9 shows the base-stock levels as a function of m2, keeping h2 = h1 = 1.

The insights of Theorem 6 are again verified as xH,2
k are non-increasing in the moving cost.

6 Conclusion and Further Research

In this paper, we have analyzed a continuous-stage multi-echelon inventory system. Under

such setting, using the observation that under an optimal policy orders should not cross, we

have decomposed the problem into a set of subproblems that can be solved one by one. The

optimality conditions can be expressed through a set of HJB equations. In the case of constant

or linear holding and moving costs, we characterize the structure of the solutions: it is optimal

to ship the k-th item only for the stages in a given interval [xLk , x
H
k ]. We also characterize the

cost-to-go functions through simple expressions. For general costs, while the structure is no

longer to ship a unit only in an interval, the solution procedure can still be applied to obtain
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numerical solutions. We finally study the sensitivity of the optimal echelon base-stock levels

and find that they increase with higher back-ordering costs, higher holding costs (equal in all

echelons), smaller difference between downstream and upstream holding costs, lower moving

costs (equal in all echelons) and smaller difference between downstream and upstream moving

costs. The approach presented here can thus be used to quickly find the optimal inventory

placement in a multi-echelon system.

This work opens a number of research questions for further study. First, the general structure

of the solutions can be used to generate heuristic inventory policies. These would complement

the heuristics based on myopic decisions that are usually found from critical fractile ratios.

Second, the assumption of Poisson demand could be relaxed, to include compound Poisson

processes, or, more importantly, continuous demand processes, in which case the HJB equation

would contain
∂J

∂k
instead of Jk − Jk−1, similar to Song and Zipkin [25]. Third, the decision on

moving or not an item could be enriched by considered several speeds. The model would hence

find the optimal expediting decision. This is studied in The Authors [1]. Finally, distribution

and assembly systems could also be considered, but these extensions present significant technical

challenges.
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[5] Axsäter S. and P. Lundell 1984. “In-Process Safety Stocks.” Proceedings of the 23rd

Conference on Decision and Control in Las Vegas NV 1984.
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Appendix

Proof of Lemma 1

Proof. Consider an optimal policy and one sample path where two units cross. That is, unit 1

is ordered earlier than unit 2 (the time where it is moved at x = L is strictly smaller for 1) but

unit 2 arrives to x = 0 earlier than 1 (the time where unit 2 arrives at x = 0 is strictly smaller

than for 1). Since the movement is continuous, if two units cross, consider the earliest time

where they coincide in the same stage x. Since the moving and holding costs are independent

of how stage x was reached, one can always choose to move unit 1 first, without changing the

costs incurred. Consequently, order crossing cannot strictly reduce the cost, and a non-crossing

policy is also optimal.

Proof of Theorem 1

Proof. We will prove the result by induction. The induction hypothesis is that, for k ≥ 0,
dJk
dx

is quasi-concave, first increasing and then decreasing (denote xMk the value at which it reaches

the maximum), and that

Jk(x) =


h+ λJk−1(x)

r + λ
if 0 ≤ x ≤ xLk

satisfies HJB equation, (4) if xLk ≤ x ≤ xHk
h+ λJk−1(x)

r + λ
if xHk ≤ x

To initiate the induction, we use that for k = 0
dJ0
dx

is quasi-concave because it is decreasing

continuously for xL0 = xM0 = 0 ≤ x ≤ xH0 and then equal to zero for x > xH0 .

Assume that the induction property is true for k − 1 ≥ 0 and consider the problem for unit

k. Let JY
k (x) and JN

k (x) :=
h+ λJk−1(x)

r + λ
denote the the expected net present value of all costs

if the unit is moved or not moved, respectively.

If it is optimal not to move unit k for all x, then Jk = JN
k for all x. This is true when

dJk
dx

< m for all x. If this is true, then
dJk
dx

=
dJN

k

dx
=

λ

r + λ

dJk−1

dx
. It is quasi-concave because

dJk−1

dx
is quasi-concave from the induction property. In this case xLk = ∞ and xHk = 0.

In general, however, it may be optimal to move unit k for some x. We start showing that
dJN

k

dx
is increasing before it is optimal to move the unit; that

dJY
k

dx
is then first increasing and

then decreasing; and finally that
dJN

k

dx
is decreasing once it is no longer optimal to move the

unit again.
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For x ≤ xLk−1, since
dJk−1

dx
≤ m, then

dJN
k

dx
≤ λm

r + λ
≤ m, and hence it is optimal not to

move the unit, i.e., v∗k(x) = 0. Let xLk := min

{
x

∣∣∣∣dJN
k

dx
≥ m

}
(∞ if no such value exists, in

which case there is nothing to show and then we can set xHk = 0). At x = xLk , Jk = JY
k , and

thus solves the HJB equation

dJY
k

dx
= h+m+ λJk−1 − (λ+ r)JY

k .

We claim that it is first increasing and then decreasing. Indeed, since Jk−1 and JY
k are differ-

entiable, then JY
k is infinitely differentiable. It turns out that

dJY
k

dx
is locally non-decreasing at

x = xLk , because

d2JY
k

dx2
(xLk ) = λ

dJk−1

dx
(xLk )− (λ+ r)

dJY
k

dx
(xLk )

= (λ+ r)

(
dJN

k

dx
(xLk )−

dJY
k

dx
(xLk )

)
= 0

because
dJN

k

dx
(xLk ) =

dJY
k

dx
(xLk ) = m. Furthermore, we have

d3JY
k

dx3
(xLk ) = λ

dJ2
k−1

dx2
(xLk )− (λ+ r)

d2JY
k

dx2
(xLk ) = λ

dJ2
k−1

dx2
(xLk ) ≥ 0

because we are in the convex part of Jk−1, i.e., x ≤ xMk−1. Hence,
dJY

k

dx
is initially increasing

above m.

Let xMk := min

{
x

∣∣∣∣x ≥ xLk ,
d2JY

k

dx2
= 0

}
. Because

dJY
k

dx
is initially increasing, this can only

be a maximum. As a result,

d3JY
k

dx3
(xMk ) = λ

d2Jk−1

dx2
(xMk )− (λ+ r)

d2JY
k

dx2
(xMk ) = λ

d2Jk−1

dx2
(xMk ) ≤ 0.

This implies that xMk ≥ xMk−1, i.e., x
M
k is in the region where Jk−1 is concave. Hence, any

point x ≥ xMk such that
d2JY

k

dx2
= 0 can only be a maximum too, which is impossible because

for a differentiable function a maximum can only be followed by a minimum. Thus,
dJY

k

dx
is

decreasing for x ≥ xMk .

Denote xHk := min

{
x

∣∣∣∣x ≥ xMk ,
dJY

k

dx
≤ m

}
the value where JN

k (x) becomes smaller than

the solution to JY
k again. At this point Jk(x) = JN

k (x) and
dJN

k

dx
=

λ

r + λ

dJk−1

dx
≤ m. For

x ≥ xMk ≥ xMk−1,
dJN

k

dx
is decreasing because

dJk−1

dx
is quasi-concave and decreasing after xMk−1.

Furthermore, xHk ≤ xHk−1 since
dJk−1

dx
(xHk ) =

r + λ

λ

dJN
k

dx
(xHk ) =

r + λ

λ
m ≥ m. This completes

the induction.
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Theorem 2

Proof. We can show it by induction. This is clearly true for k = 0. For k ≥ 1, since

xLk−1 ≤ xLk ≤ x ≤ xHk ≤ xHk−1, Jk satisfies the HJB equation where Jk−1 can be expressed as

Mk −Nke
−rx +

(
k−1∑
i=0

Ak,ix
i

)
e−(r+λ)x. This is a first-order differential equation that is solved

with the parameters described in the theorem.

Theorem 3

Proof. We show quasi-concavity of
dJk
dx

for k ≥ 0, together with the structure of the cost-to-go

function by induction. We have already shown it for k = 0 just before the theorem. Assume

the induction property is true for k − 1 ≥ 0.

As in the proof of Theorem 1, define the net present value of not moving a unit JN
k

JN
k (x) =

h(x) + λJk−1(x)

r + λ
=

h0 + h′x+ λJk−1(x)

r + λ

This implies that

dJN
k

dx
(x) =

h′ + λ
dJk−1

dx (x)

r + λ

and hence

d2JN
k

dx2
(x) =

λ
d2Jk−1

dx2 (x)

r + λ

It can be concluded that if
dJk−1

dx
is quasi-concave, then

dJN
k

dx
is quasi-concave too.

As a result, let xLk := min

{
x

∣∣∣∣dJN
k

dx
≥ m

}
≥ xLk−1 (otherwise

dJN
k

dx
(xLk ) < m). If xLk < ∞,

then at some point it is optimal to start moving the unit forward. It can be noted that

xLk ≤ xMk−1, defined as the maximum of
dJk−1

dx
. At this point, we have

dJk
dx

(xLk ) = h(xLk ) +m+ λJk−1(x
L
k )− (r + λ)Jk(x

L
k ) = m,

because Jk−1 and Jk are continuous. Also,

d2Jk
dx2

(xLk ) = h′ +
λdJk−1

dx
(xLk )− (r + λ)

dJk
dx

(xLk ) = (r + λ)

(
dJN

k

dx
(xLk )−

dJk
dx

(xLk )

)
= 0

and
d3Jk
dx3

(xLk ) =
λd2Jk−1

dx2
(xLk )− (r + λ)

d2Jk
dx2

(xLk ) > 0

because at x = xLk , Jk−1 is convex (otherwise,
dJN

k

dx
could not be increasing).
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Let xMk := min

{
x

∣∣∣∣x ≥ xLk ,
d2JY

k

dx2
= 0

}
be the (first) maximum point of

dJk
dx

. At this point

we have
d3Jk
dx3

(xMk ) =
λd2Jk−1

dx2
(xMk )− (r + λ)

d2Jk
dx2

(xLM ) < 0

which implies that xMk > xMk−1 and, as in the proof of Theorem 1, that
dJk
dx

is decreasing after

xMk . This results in having a xHk := min

{
x

∣∣∣∣x ≥ xMk ,
dJY

k

dx
≤ m

}
≤ xHk−1 after which it is

optimal not to move the inventory anymore.

To finish the induction proof, we can see that the cost-to-go functions verify Equation (9).

Proof of Theorem 4

Proof. The cost-to-go function for k = 0 can be expressed as

J0(x) =


∫ x
0 (b+m0 +m′(x− z) + h)e−rzdz =(
b+m0 + h

) 1− e−rx

r
+

m′(e−rx − 1 + rx)

r2
if x ≤ xH0

b+ h

r
otherwise.

It is never optimal to move this unit only part of the way, as this only will result in a moving cost

without any reduction in the holding or back-order cost. The function F0(x) :=
dJ0
dx

−m(x) is

hence first increasing and then decreasing for xL0 = 0 ≤ x ≤ xH0 . The same is true for
dF0

dx
, which

is enough to initiate the induction proof. The induction property is that Fk(x) :=
dJk
dx

−m(x)

and
dFk

dx
are quasi-concave first increasing and then decreasing, in xLk ≤ x ≤ xHk , for all k ≥ 0.

It is true for k = 0. Let us assume that it is true for k− 1 and investigate the properties for k.

We denote

FN
k (x) :=

dJN
k

dx
(x)−m(x) =

λ
dJk−1

dx (x)

λ+ r
−m(x) =

λFk−1(x)− rm(x)

λ+ r
,

and

F Y
k (x) :=

dJY
k

dx
(x)−m(x) = h+ λJk−1(x)− (λ+ r)Jk(x).

If we differentiate these expression we obtain

dFN
k

dx
(x) =

λ
dFk−1

dx − rm′

λ+ r

and
dF Y

k

dx
(x) = λFk−1(x)− (λ+ r)Fk(x)− rm(x) = (λ+ r)

(
FN
k (x)− Fk(x)

)
.
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Let xLk be the lowest x where FN
k (x) = 0 and one goes from a no-move decision to a move

decision. Observe that xLk ≥ xLk−1 because Fk−1(x
L
k ) = 0. At this point we have

dF Y
k

dx
(xLk ) = (λ+ r)

(
m(xLk )−m(xLk )

)
= 0

d2F Y
k

dx2
(xLk ) = λ

dFk−1

dx
(xLk )− rm′ = (λ+ r)

dFN
k

dx
(xLk ).

The later expression must be greater than zero, unless xLk = xHk (because FN
k is increasing at

xLk , as it crosses 0 from below). Let xMk be the first value were F Y
k is maximized, i.e., where

dF Y
k

dx
(xMk ) = 0

and
d2F Y

k

dx2
(xMk ) = λ

dFk−1

dx
(xMk )− rm′ < 0.

Since
dFk−1

dx
is quasi-concave in [xLk−1, x

H
k−1] from the induction property, then because

dFk−1

dx
(xMk ) <

dFk−1

dx
(xLk ),

dFk−1

dx
will continue to decrease after xMk as rm′ is constant, and hence

d2F Y
k

dx2
< 0.

Eventually, F Y
k (x) = 0 at some point xHk ≤ xHk−1. At this point FN

k (xHk ) < 0 and decreasing

as
dFN

k

dx
(xHk ) =

1

λ+ r

(
λ
dFk−1

dx
(xHk )− rm′

)
< 0 at least until x = xHk−1. For x > xHk−1, due

to the non order-crossing property, FN
k (x) < 0. Consequently, Fk(x) will be quasi-concave for

xLk ≤ x ≤ xHk .

It now only remains to show that
dFk

dx
(x) is quasi-concave for xLk ≤ x ≤ xHk . We know from

above that
dFk

dx
(x) is increasing at xLk . Let xM

′
k be the first x such that

d2F Y
k

dx2
(xM

′
k ) = 0 and

d3F Y
k

dx3
(xM

′
k ) = λ

d2Fk−1

dx2
(xM

′
k ) < 0, i.e., it is a maximum. It should be noted that

dFk−1

dx
(x) is

decreasing at xM
′

k and so it will be for all ≥ xM
′

k as well. As a result
dF Y

k

dx
(x) will be increasing

for xLk ≤ x < xM
′

k and decreasing for xM
′

k < x ≤ xHk . This completes the induction.

Finally, it can be easily verified that the expressions for the cost-to-go functions satisfy the

HJB equation, (5).

Proof of Theorem 5

Proof. In each segment [zi, zi+1), we apply the same proof as for Theorem 1, i.e., we show

that
dJ i

k

dyi
is quasi-concave. The only slight modification is that we restrict our attention to the

segment, and hence the resulting thresholds satisfy the constraint that xL,ik ≥ zi and xH,i
k ≤ zi+1.

32



Proof of Theorem 6

Proof. We show the theorem based on the proof of Theorem 1, by induction. Our induction

hypothesis here is that, for k ≥ 0,
d

db

(
dJk
dx

)
≥ 0,

d

dh

(
dJk
dx

)
≥ 0 and

d

dm

(
dJk
dx

)
≤ 1. For

k ≥ 1, since xLk is the lowest x such that

dJk
dx

−m ≥ 0,

in a range where
dJk
dx

is increasing, then increasing b or h or decreasing m reduces xLk . Similarly,

since xNk is the lowest x higher than xLk such that

dJk
dx

−m ≤ 0,

in a range where
dJk
dx

is decreasing, then increasing b or h or decreasing m induces xHk .

Let us show the induction property. For k = 0, we know that xH0 increases with b and h and

decreases with m. Equation (7) yields

dJ0
dx

(x) =

{
(b+ h+m)e−rx if x ≤ xH0

0 otherwise.

which satisfies the induction property. Assume it is true for k− 1 ≥ 0. For k, we have that JN
k

defined by Equation (6) satisfies
d

db

(
dJN

k

dx

)
≥ 0,

d

dh

(
dJN

k

dx

)
≥ 0 and

d

dm

(
dJN

k

dx

)
≤ 1. This

implies that increasing b or h or decreasing m reduces xLk . Consider now the derivative of the

HJB equation, Equation (5):

d2Jk
dx2

= λ
dJk−1

dx
− (λ+ r)

dJk
dx

We claim that
d

db

(
dJk
dx

)
≥ 0 in [xLk , x

H
k ]. Indeed, consider in this interval the smallest x such

that
d

db

(
dJk
dx

)
< 0. For this x, x > xLk because, as b increases,

dJk
dx

(xLk ) goes from m to a

larger value. Using the induction property, the equation above implies that

d

db

(
d2Jk
dx2

)
= λ

d

db

(
dJk−1

dx

)
− (λ+ r)

d

db

(
dJk
dx

)
> 0.

This implies that
d

db

(
dJk
dx

)
< 0 is increasing in x (derivatives can be exchanged), and hence

this x is not the smallest x that satisfies the property. This is contradiction, and hence such x

does not exist. The same argument shows that
d

db

(
dJk
dx

)
≥ 0. For m, the argument is a little
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different. Consider in [xLk , x
H
k ] the smallest x such that

d

dm

(
dJk
dx

)
> 1. Using the derivative

of the HJB equation,

d

dm

(
d2Jk
dx2

)
= λ

d

dm

(
dJk−1

dx

)
− (λ+ r)

d

dm

(
dJk
dx

)
< 0.

This would imply that for a slightly smaller x,
d

dm

(
dJk
dx

)
> 1 as well, which is a contradiction

since at the low end of the interval
d

dm

(
dJk
dx

)
(xLk ) ≤ 1. Hence

d

dm

(
dJk
dx

)
≤ 1.

For x > xHk , we have already shown the effect on
dJN

k

dx
. This completes the proof of the

induction property.
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