
 

 

IESE Business School-University of Navarra - 1 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 
ON THE IDENTIFICATION OF THE COSTS 

OF SIMULTANEOUS SEARCH 

José Luis Moraga-González 

Zsolt Sándor 

Matthijs R. Wildenbeest 

 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
IESE Business School – University of Navarra 
Av. Pearson, 21 – 08034 Barcelona, Spain. Phone: (+34) 93 253 42 00 Fax: (+34) 93 253 43 43 
Camino del Cerro del Águila, 3 (Ctra. de Castilla, km 5,180) – 28023 Madrid, Spain. Phone: (+34) 91 357 08 09 Fax: (+34) 91 357 29 13 
 
Copyright © 2011 IESE Business School. 

Working Paper 

WP-867 

Rev. May, 2011 



 

 

IESE Business School-University of Navarra 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Public-Private Sector Research Center is a Research Center based at IESE Business 
School. Its mission is to develop research that analyses the relationships between the 
private and public sectors primarily in the following areas: regulation and competition, 
innovation, regional economy and industrial politics and health economics.   

Research results are disseminated through publications, conferences and colloquia. 
These activities are aimed to foster cooperation between the private sector and public 
administrations, as well as the exchange of ideas and initiatives.  

The sponsors of the SP-SP Center are the following:  

 Accenture 
 Ajuntament de Barcelona 
 Departament d’ Economia i Coneixement de la Generalitat de Catalunya 
 Departament d’ Empresa i Ocupació de la Generalitat de Catalunya 
 Diputació de Barcelona 
 Endesa 
 FOBSIC 
 Fundació AGBAR 
 Institut Català de les Indústries Culturals 
 Mediapro 
 Sanofi Aventis 
 ATM, FGC y TMB 

The contents of this publication reflect the conclusions and findings of the individual 
authors, and not the opinions of the Center's sponsors. 



On the Identification of the Costs of

Simultaneous Search∗
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Abstract

This paper studies the identification of the costs of simultaneous search in portfolio problems

(Chade and Smith, 2006). We show that market shares data from a single market do not

provide sufficient information to identify the search cost distribution in any interval, even if

utility distributions are known to the econometrician. We then show that by pooling data

from markets where the alternatives that similar decision makers confront vary, the search cost

distribution and the utility parameters of the logit demand model can be identified.
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1 Introduction

The estimation of the costs consumers incur in markets when they search for satisfactory products

constitutes a new and important area of empirical research.1 The econometrician typically observes

the market shares and the characteristics of the different alternatives, but not necessarily the subset

of products searched by individual consumers. In markets where the costs of search are significant,

variation in the market shares of the distinct alternatives is not just due to variation in their

characteristics but also due to variation in the subsets of products different decision-makers choose

to search. Therefore, the question is whether the costs of search can be identified with this type of

data.

This paper studies the nonparametric identification of the costs of simultaneous search in port-

folio problems (Chade and Smith, 2005, 2006). The class of portfolio problems we study embeds

a number of important decision problems in economics. In these problems a decision-maker must

simultaneously choose among a set of ranked stochastic options; each choice is costly and only the

best realized option is finally exercised. This problem arises for example when students apply for

colleges (Gale and Shapley, 1962; Kelso and Crawford, 1982; Roth and Sotomayor, 1989), when

consumers search for differentiated products (Stigler, 1961; Wolinsky, 1986; Anderson and Renault,

1999), or when workers search for employment (Burdett et al., 2001; Albrecht et al., 2006; Kircher,

2009).

In all these papers, an important issue is the study of the extent to which the costs of search drive

a wedge between the market outcome and the social optimum and how it can be corrected. The

analysis of counterfactuals requires knowledge of the density of search costs. Therefore, assessments

of public policy measures aimed at aligning the market and the social outcomes (minimum wage

policy, information disclosure policy, merger policy, etc.), or estimating the social value of new

alternatives requires the development of methods to identify and estimate the costs of simultaneous

search. In this paper we study whether the restrictions imposed by economic theory allow for the

identification of search costs non-parametrically.

We consider markets where the costs of search vary across the decision-makers. In this type

of markets, we study whether the econometrician can identify the search cost distribution non-

parametrically using market shares data and knowing the utility distributions a large number of

options provide to the decision-makers. We first show that such data from a single market do

1See e.g., Mehta, Rajiv, and Srinivasan (2003), Hortaçsu and Syverson (2004), Hong and Shum (2006), Kim,

Bronnenberg and Albuquerque (2009), Honka (2010), Koulayev (2010), Moraga-González, Sándor, and Wildenbeest

(2010) and Seiler (2010).
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not provide sufficient information to identify the costs of simultaneous search in any reasonable

interval. The problem originates from the fact that the sequence of critical search costs that can

be identified from the data is convergent, so the set of search cost values the econometrician can

identify is not dense in the support of the search cost distribution.

The paper then proceeds by studying whether the use of aggregate data from multiple markets

suffices to identify the search cost distribution. We propose to pool data from markets that differ

in the alternatives similar decision-makers confront. We show that these data allow for the joint

identification of the search cost distribution and the utility parameters in the logit demand model.

The reason why this type of data helps is that it generates a distinctive set of search cost values

in every market for which the econometrician can retrieve the density of search costs. By pooling

market share data from many markets one forces the search cost distribution to be uniquely de-

termined for a much larger set of points. Gathering the appropriate data is relatively easy for the

econometrician. For example, in the college problem, one can take data from different towns, with

typically distinct numbers of colleges, different application success rates, etc. In the case of con-

sumer search for differentiated products, one can pool data from markets where different product

qualities are available.

The remainder of the paper is organized as follows. We start by describing the class of simul-

taneous search problems we study in Section 2. The identification results use the market share

equations and these are derived in Section 3. Two leading examples studied in detail by Chade

and Smith (2005, 2006) are discussed in Section 4. Our identification results are given in Section

5. Section 6 concludes. The longer proofs are relegated to the Appendix.

2 The model

We study the identification of the costs of search in a general class of simultaneous search problems.

In this class of problems, a decision-maker must make a simultaneous choice among (ranked)

stochastic options; each choice is costly and only the best realized alternative is finally consumed.

Chade and Smith (2005, 2006) have recently studied these problems and we build on their model.2

2Chade and Smith (2005, 2006) study the solution to the simultaneous search problem. They prove that a greedy

algorithm finds the solution in two sub-classes of problems: problems with downward recursive (DR) payoff functions,

and non-DR problems with prize distributions ordered by a second-order stochastic dominance (SOSD) condition.

We instead focus on the identification of the costs of simultaneous search based on market data. Our identification

results are for more general payoff structures which need not satisfy DR or SOSD. We nevertheless discuss the DR

and SOSD cases in separate subsections.
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We assume that in a market there is a continuum of heterogeneous decision-makers who can

choose to consume prizes/options from a set N containing N options. Each option i gives a payoff

ui, where ui is a random variable with probability distribution Ψi with support Φi ≡ [ui, ui] ⊂ <,

i = 1, 2, ..., N. We assume that the random variables u1, u2, ..., uN are independent. Let the interval

[0, u] contain the union of all the options’ supports [ui, ui], i = 1, 2, ..., N. The distribution Ψi may

be discrete or continuous and the support Φi may include zero so that some options may fail to

give a positive payoff with strictly positive probability. Let us denote by NF the set of options that

can fail with strictly positive probability (N = NF ∪NF ).

Assumption FD (free disposal). The set of alternatives N does not contain strictly domi-

nated options.

The role of this assumption is to exclude options for which market shares are equal to zero.

Suppose there exists an option ` whose payoff is always higher than that of some other option k,

that is, uk ≤ u`. Suppose also that option ` is a “sure” option in the sense that it always yields

a positive payoff. In that case, ` strictly dominates k and k can be discarded from the set of

alternatives N . An implication of Assumption FD is that when all options can fail with strictly

positive probability, then there does not exist any option that can be ex-ante discarded. Moreover,

under Assumption FD, ∩i∈NFΦi must be a non-empty interval.

Each decision-maker is characterized by her cost of searching an option. Let c be the cost of

search of a decision-maker. If the decision-maker searches the subset of options S, her total cost

is c|S|, where |S| denotes the cardinality of the subset S. Assume c is drawn independently from

a common atomless distribution H(c) with support Ω = [0, c]; let h(c) denote the corresponding

density. It will be convenient to assume c is sufficiently large, which ensures that there always exist

decision-makers who do not search at all.3

Every decision-maker ultimately consumes one single option (like in discrete choice models).

For a given set of options S⊆ N , let f(S) denote the expected (gross-of-cost) payoff:

f(S) ≡ E[max{ui : i ∈ S}] =

∫ u

0

(
1−

∏
i∈S

Ψi(u)

)
du. (1)

Note that f is a non-decreasing and bounded function. We adopt the normalization f(∅) = 0. The

problem of a decision-maker with cost of searching options equal to c is to choose a (sub-)set of

options S ⊆ N to maximize her expected payoff:

max
S⊆N

{f(S)− c|S|} . (2)

3This assumption can easily be relaxed (see Section 4) and only requires some additional notation.
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3 Market shares

The problem of identification consists of studying whether the information provided by the market

data and the market share equations is sufficient to determine the primitives of the model. We

study next the derivation of the market share equations.

A solution to the problem in (2) for decision-maker with search cost c is a set of options S∗(c).

Given this decision-maker chooses to search the set S∗(c), she will consume the best of the options

in S∗(c). From the perspective of the entire market, when we vary c the optimal choice set changes.

Therefore, to compute the market share of an option j, we need to consider all the possible choice

sets that contain a given option j. Let Sj denote the set of choice sets that include option j.

Then, aggregating the individual decision-maker choices gives the market-shares of the different

alternatives, which we denote by qj :

qj =
∑
S∈Sj

[∫
I(c chooses S)dH(c)

]
Pj|S (3)

where I(c chooses S) is the indicator that decision-maker c chooses the set of options S and Pj|S

is the probability option j turns out to be the best option in the set S.

We next elaborate on these market shares. The solution to problem (2) can be understood

as follows. Let Σ1 = arg max{f ({i}) : i ∈ N} be the best singleton option, that is, the single

alternative that yields the highest payoff to the decision-maker among all possible single options.

Likewise, let Σ2 = arg max{f ({i, j}) : i, j ∈ N} be the best pair of alternatives, that is, the pair

of options that yields the highest payoff to the decision-maker among all possible pairs. More

generally, let Σk = arg max{f ({i1, i2, ..., ik}) : i1, i2, ..., ik ∈ N} be the k-option tuple that gives

the highest payoff to the decision-maker. Let Σ0 = ∅.

Given the above definition of Σk, the optimal choice set for a decision-maker with search cost

c, S∗(c), is then equal to Σk∗(c) where4

k∗(c) = arg max
k∈{0,1,...,N}

{f(Σk)− ck} . (4)

Since we have a continuum of decision-makers, we now argue this solution defines a partition of the

set of decision-makers into fractions µk ≥ 0 of them choosing to search k options, with
∑N

k=0 µk = 1.

4When N is large, finding k∗(c) is challenging from a computational point of view because there are 2N choice sets

to be evaluated. Chade and Smith (2005, 2006) provide an algorithm, namely the Marginal Improvement Algorithm

(MIA), that identifies the optimal solution for two classes of problems. The first class is one where prizes are binary

(Φi = {0, ui}) and the payoff function f satisfies downward recursivity (DR). The second class is one where the prize

distributions Ψi are ordered by a second-order stochastic dominance (SOSD) condition (see Section 4).
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The fraction of decision-makers choosing to search k alternatives is

µk =

∫
f(Σk)−kc≥f(Σ`)−`c

`=0,1,2,...,N

dH(c), k = 0, 1, 2, ..., N

which can be rewritten as

µk = I(ck > ck) [H(ck)−H(ck)] , k = 0, 1, 2, ..., N (5)

where

ck = min
`<k

{
f(Σk)− f(Σ`)

k − `

}
(6)

ck = max
`>k

{
f(Σ`)− f(Σk)

`− k

}
. (7)

Notice that the indicator I(ck > ck) can take value zero, which signifies that no decision-maker will

choose to search k options (or the set of options Σk).

Our identification results build on the market share equations to retrieve the search cost distri-

bution at the set of points generated by the partition (5). We shall refer to these points as cutoff

points, because they separate the search cost values that correspond to the different numbers of

searches. These cutoff points, which are defined below in (8), follow from the critical search cost

values given in (6)-(7). We now state a property of the critical search cost values in (6)-(7) that is

useful to determine the cutoff points in (8).

Proposition 1 If (i) ck ≥ ck, (ii) ck+j ≤ ck+j for j = 1, 2, ..., h − 1, and (iii) ck+h ≥ ck+h for

some k ≥ 0, h ≥ 1, k + h < N , then

ck = ck+h =
f(Σk+h)− f(Σk)

h
.

The proof of this result is in the Appendix. Building on this Proposition and on the critical

search cost values (6) and (7), we can define the search cost cutoffs that separate the decision-makers

choosing to search different numbers of options. These are given by the sequence

c0 = c0,

ck =

 ck = ck+1 if ck ≥ ck
ck−1 otherwise

for k ≥ 1. (8)

Under the conditions of Proposition 1, at the cutoff point ck decision-makers are indifferent between

searching the sets Σk and Σk+h. This implies that the sequence of cutoffs {ck}Nk=0 satisfies an

important property.
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Proposition 2 The sequence of cutoff points {ck}Nk=0 defined in (8) is weakly decreasing.

We now provide a couple of examples to illustrate the cutoffs (8) and the fractions of consumers

(5). The purpose of the examples is twofold. First, the examples show that the cutoff sequences

are indeed decreasing. Second, and more importantly, the examples serve the purpose of showing

that all numbers of options will not necessarily be searched by some decision-makers. In fact, in the

second example no decision maker finds it optimal to search 2 options. This is important because

such cases pose some threats for identification (cf. Proposition 4,ii).

Example 1. Consider a market where there are 3 options in total. For notational simplicity

let f` ≡ f(Σ`), ` = 1, 2, 3. Let f1 = 13, f2 = 18 and f3 = 20. A decision-maker with search cost

c above c0 ≡ max{f1, f2/2, f3/3} = 13 will clearly choose to search the empty set. This is the

fraction of consumers denoted µ0 in Figure 1. Since c1 ≡ max{f2 − f1, (f3 − f1)/2} = f2 − f1,

decision-makers with search cost c ∈ (c1, c1) = (c1, c0) = (f2 − f1, f1) clearly prefer to search just

one option. This is the fraction of consumers denoted µ1 in the graph. Note that c2 ≡ f3 − f2.

Therefore, decision-makers with search cost c ∈ (c2, c2) = (c2, c1) = (f3−f2, f2−f1) find it optimal

to search 2 options. This is the fraction of consumers µ2 in the graph. Finally, decision-makers

with search cost c ∈ (c3, c3) = (c3, c2) = (0, f3 − f2) search the three options. This fraction of

consumers is denoted µ3 in the Figure.

Figure 1: Search decisions in Example 1
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Example 2. This example is exactly identical to the one above except in that we now modify

the value of f2, which we lower from 18 to 15. This change is sufficient to render the inequality

c2 ≡ f2− f1 < c2 ≡ f3− f2. As it can be seen, in this case the fraction of decision-makers who find

it optimal to search two options is equal to zero.

Figure 2: Search decisions in Example 2

We are now ready to compute the market shares of the different alternatives. The system of

market shares in (3) can be rewritten as:

q0 = µ0 +
N∑
j=1

µj

N∑
i1,i2...,ij=1
i1<i2<...<ij

Pr[ui1 , ui2 , ..., uij = 0]I(i1, i2, ..., ij ∈ Σj)

qi = µ1 Pr[ui > 0]I(i ∈ Σ1)

+

N∑
j=2

µj

N∑
i1,i2...,ij−1=1
i1,i2...,ij−1 6=i
i1<i2<...<ij−1

Pr
[
ui > max{0, ui1 , ui2 , ..., uij−1}

]
I (i, i1, i2, ..., ij−1 ∈ Σj) (9)

4 Special cases

We now present two important cases for which a solution to problem (2) can be found by applying

the MIA algorithm of Chade and Smith (2006). These two cases are special in that the payoff
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function f has diminishing returns. As a result, in these two examples all numbers of options will

be searched with strictly positive probability, i.e. µi > 0 for all i. As shown above, this is not true

in general.

4.1 Binary prizes (The college problem)

In the college problem5 a decision-maker must choose a portfolio of colleges S ⊆ N to which to

apply for admission. The distributions Ψi have two-point supports: Φi = {0, ui}. An option i

yields a ex-post payoff ui with probability αi ∈ (0, 1], otherwise zero. The number αi is then the

admission chance at college i. Moreover, college 1 is ex-post the best, college 2 is ex-post the second

best, etc.: u1 > u2 > ... > uN . Applying for admission at S ⊆ N colleges costs the student c|S|.

The expected (gross-of-cost) payoff from applying to the set of colleges S is

f(S) =

|S|∑
i=1

α(i)u(i)

i−1∏
j=1

(1− α(j)) (10)

where (i) denotes the i-th best ranked college in the set S and therefore
i−1∏
j=1

(1 − α(j)) is the

probability with which a decision-maker gets rejected by the top-ranked i− 1 schools in S. Chade

and Smith (2006) point out that the payoff function in (10) is downward recursive (DR). That is,

for any two sets U,L in N with U w L (i.e. where the worst option in U beats the best in L) we

have f(U + L) = f(U) + ρ(U)f(L) where ρ(U) ≡
∏
j∈U

(1− αj) is the chance that all the options in

the set U fail.

Chade and Smith (2006) provide an algorithm to find S∗(c). The Marginal Improvement Al-

gorithm (MIA) identifies the solution to this problem via an inductive procedure. In essence, the

MIA algorithm works as follows.

Step 1. Add the best single option σ1 = arg max{αiui : i ∈ N} to the optimal choice set if

f({σ1}) ≥ c, otherwise choose the empty set and stop.

Step 2. Add option σ2 = arg max{f({σ1, i}) : i ∈ N�{σ1}} to the optimal choice set if

f({σ1, σ2})− f({σ1}) ≥ c, otherwise stop.

...

Step k. Add option σk = arg max{f({σ1, σ2, ..., σk−1, i}) : i ∈ N�{σ1, σ2, ..., σk−1}} to the

optimal choice set if f({σ1, σ2, ..., σk}) − f({σ1, σ2, ..., σk−1}) ≥ c, otherwise stop (for all k =

3, 4, .., N).

5The college problem is similar to the directed search problem in labor economics studied by Burdett, Shi and

Wright (2001), Albrecht et al. (2006) and Kircher (2009).
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For our purposes, we are interested in the market outcome this problem generates. Recall

that µi denotes the probability that a randomly selected decision-maker chooses the set of options

{σ1, σ2, ..., σi}, i = 1, 2, .., N, and µ0 is the probability of choosing the empty set. Since c is

distributed according to H, these probabilities can readily be computed:

µ0 = 1−H(c0) and

µk = H(ck−1)−H(ck), k = 1, 2, ..., N, (11)

where

c0 = f({σ1}),

ck = f({σ1, σ2, ..., σk+1})− f({σ1, σ2, ..., σk}), k = 1, 2, ..., N − 1 (12)

cN = 0.

The number ck is the corresponding cutoff value of the search cost distribution that makes a decision-

maker indifferent between choosing the best k-option-tuple and the best k + 1-option-tuple. We

note that the sequence of cutoff values {ci}Ni=0 is decreasing because f exhibits diminishing returns

(see Lemma 5 in Chade and Smith, 2006); therefore the probabilities µi are well-defined and are

all strictly positive.

The market shares of the different options can be written as follows:

q0 = µ0 +

N∑
j=1

µj

j∏
`=1

(1− ασ`)

qσk = ασk

k−1∏
`=1

(1− ασ`)
N∑
j=k

µj , k = 1, 2, ..., N. (13)

where ασ` is the probability with which the application of a decision-maker succeeds at college σ`.

4.2 Search for differentiated products

Consider the following model of search for differentiated products, which generalizes Stigler (1961)

and Burdett and Judd (1983) to the case of non-identical and non-sure prizes (Chade and Smith,

2005). There are N firms offering differentiated products to a continuum of consumers. A consumer

must visit a set S of shops to learn the utility she derives from the different products available at

the shops in S. Once the utility is learnt, the consumer picks the single product that gives her the

highest utility. Assume that the product of a shop i gives a payoff ui with probability αi ∈ (0, 1],

10



where ui is a random variable with probability distribution Ψi and support [ui, ui], i = 1, 2, ..., N.

The scalar αi can be interpreted here as the probability with which a shop carries the product, or

has it in stock. Assume that the random variables u1, u2, ..., uN are independent. Let the interval

[0, u] contain the union of all the products’ supports [ui, ui], i = 1, 2, ..., N. Define νi = Iαiui, where

Iαi is a Bernoulli random variable that takes value 1 with probability αi. The distribution of νi is

Gi = (1− αi) + αiΨi and its support is Φi ≡ {0} ∪ [ui, ui] when αi < 1, otherwise Φi ≡ [ui, ui].

Assumption SOSD. The distributions Gi can be ranked according to the quasi-second order

stochastic dominance criterion, that is:
∫ u
x Gi(u)du ≤

∫ u
x Gi+1(u)du, i = 1, 2, ..., N − 1, for all

x ∈ [0, u] with strict inequality at x = 0.

Given Assumption SOSD, ex-ante the best product is product 1, the second best product is

product 2, etc. The expected (gross-of-cost) payoff from visiting the set of shops S is

f(S) ≡
∫ u

0

(
1−

∏
i∈S

Gi(u)

)
du (14)

Chade and Smith (2005) note that the payoff structure in (14) is not DR.

For our purpose, it is useful to prove that f has the following properties.

Proposition 3 Under Assumption SOSD,6:

(i) f({1, 2, ..., i}) ≥ f({1, 2, ..., i− 1, `}) for all ` ≥ i.

(ii) f({1, 2, ..., i})− f({1, 2, ..., i− 1}) ≥ f({1, 2, ..., i+ 1})− f({1, 2, ..., i}), i = 2, ..., N.

Proof. (i) We need to prove that

∫ u

0

1−
i∏

j=1

Gj(u)

 du−
∫ u

0

1−G`(u)

i−1∏
j=1

Gj(u)

 du =

∫ u

0

i−1∏
j=1

Gj(u)(G`(u)−Gi(u))du ≥ 0,

for all ` ≥ i. Notice that G`(u) − Gi(u) can be negative for some u. Let β(u) =
∏i−1
j=1Gj(u) and

γ(u) = G`(u)−Gi(u). We need to show that∫ u

0
β(u)γ(u)du ≥ 0. (15)

Note that β is monotonically increasing in u, is absolutely continuous on (0, u], with β(0) = 0 and

β(u) = 1. Moreover, by the SOSD assumption,
∫ u
x γ(u)du ≥ 0 for all x ∈ [0, u].7 Let

Γ(x) = −
∫ u

x
γ(u)du.

6In fact, we do not need the strict inequality condition at x = 0.
7We note that γ(u) may cross the horizontal axis several times.
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Integrating (15) by parts gives∫ u

0
β(u)γ(u)du = β(u)Γ(u)− β(0)Γ(0)−

∫ u

0
Γ(u)

dβ(u)

du
du

= −
i−1∏
j=1

(1− αj)Γ(0)−
∫ u

0
Γ(u)

dβ(u)

du
du ≥ 0.

so the result follows.

(ii) In this case we need to show that

∫ u

0

1−
i∏

j=1

Gj(u)

 du−
∫ u

0

1−
i−1∏
j=1

Gj(u)

 du−
∫ u

0

1−
i+1∏
j=1

Gj(u)

 du+

∫ u

0

1−
i∏

j=1

Gj(u)

 du

=

∫ u

0

i−1∏
j=1

Gj(u)− 2
i∏

j=1

Gj(u) +
i+1∏
j=1

Gj(u)

 du =

∫ u

0

i−1∏
j=1

Gj(u) (1− 2Gi(u) +Gi(u)Gi+1(u))

 du ≥ 0.

We now argue that∫ u

0

i−1∏
j=1

Gj(u) (1− 2Gi(u) +Gi(u)Gi+1(u))

 du ≥
∫ u

0

i−1∏
j=1

Gj(u)(1−Gi(u))2

 du ≥ 0.

For this, it suffices that ∫ u

0
ρ(u)τ(u)du ≥ 0, (16)

where ρ(u) =
∏i
j=1Gj(u) and τ(u) = Gi+1(u)−Gi(u). But this follows from the proof of (i).

We can use this proposition to describe the market outcome this problem generates. The

solution to the problem of a consumer with search cost c is a set of options {1, 2, ..., i∗(c)}. From

Part (i) in the Proposition, we derive the following algorithm to encounter the optimal solution.8

Step 1. Add option 1 to the optimal choice set if f({1}) ≥ c, otherwise choose the empty set

and stop.

Step 2. Add option 2 to the optimal choice set if f({1, 2})− f({1}) ≥ c, otherwise stop.

...

Step i. Add option i to the optimal choice set if f({1, 2, ..., i})−f({1, 2, ..., i−1}) ≥ c, otherwise

stop (for all i = 3, 4, .., N).

Since c is distributed according to H, the probability µi that a randomly selected decision-maker

chooses to sample the set of options {1, 2, ..., i}, i = 1, 2, .., N, can readily be computed:

µ0 = 1−H(c0) and (17)

µi = H(ci−1)−H(ci), i = 1, 2, ..., N,

8This algorithm succeeds in O(N) steps.
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where

c0 = f({1}),

ci = f({1, 2, ..., i+ 1})− f({1, 2, ..., i}), i = 1, 2, ..., N − 1 (18)

cN = 0.

The number ci in this case is the cutoff value of the search cost distribution that makes a decision-

maker indifferent between choosing i and i + 1 options. By Proposition 3, the sequence of cutoff

values {ci}Ni=0 is decreasing and therefore the probabilities µi are all strictly positive.

Let qi denote the market share of option i. Computing the market share of an option i involves

summing over all µ’s the probability option i turns out to be the most attractive. In general this

market share can be written as follows:

q0 = µ0,

q1 = µ1 + µ2 Pr(ν1 > ν2) + ...+ µN Pr(ν1 > max{ν2, ν3..., νN}),

q2 = µ2 Pr(ν2 > ν1) + ...+ µN Pr(ν2 > max{ν1, ν3..., νN}), (19)

...

qN = µN Pr(νN > max{ν1, ν2, ..., νN−1}).

5 Identification of the costs of search

The econometrics problem consists of retrieving the costs of simultaneous search, i.e., the dis-

tribution function H, from the market-share equations given in (9). A crucial requirement for

consistent estimation is that the search cost distribution is identified. In what follows, we study

whether such identification is possible and the necessary data requirements. We start with the case

where the econometrician has information about the preferences of the decision-makers. The joint

identification of preferences and search costs is postponed to section 5.2.

5.1 Identification with known preferences

In this section we treat the case of identification based on data from a single market.

Assumption DTA1. In a given market, the econometrician observes:

1. The distributions {Ψi}Ni=1 over the set of prizes {Φi}Ni=1 the options can deliver.

2. The aggregate market shares of the options, denoted {qi}Ni=0, where q0 is the market share

of the “outside” option.

13



In the light of the special cases discussed in Section 4, Assumption DTA1 requires observing

the numbers of students accepted at the different colleges or observing the market shares of the

various products in a single market. Assumption 3.1 implies that the researcher knows the utility

distributions each option can yield. Admittedly, this is a significant amount of information and

therefore this assumption represents a case quite favorable for identification of the search cost

distribution. Even in this favorable situation, we shall point to some identification challenges

(which of course would remain if the utility distributions were not known to the econometrician).

Later in Section 5.2 we discuss the joint identification of search costs and utility distributions.

The econometrician may be able to obtain additional data on the number of searches. Consider

then:

Assumption DTA2. The econometrician observes the data in Assumption DTA1 and in

addition the distribution of the number of searches in the market.

Our first result studies if the data described above allow for the identification of the search cost

distribution at the cutoff values defined in (8).

Proposition 4 (i) Under Assumption DTA1, in the binary-prize model, and in the search-for-

differentiated-products model with SOSD, the search cost cutoff values {ci}Ni=0 and the corresponding

values of the CDF of search cost {H(ci)}Ni=0 are identified.

(ii) Under Assumption DTA1, in the general search model, the search cost cutoff values {ci}Ni=0

and the corresponding values of the CDF of search cost {H(ci)}Ni=0 need not be identified. However,

under Assumption DTA2, they are identified.

Proof. (i) In the binary prize model, {σk}Nk=1 can be computed by the MIA algorithm. The

interesting case is when the probability the application of a decision-maker succeeds at a college

ασk < 1, for all k < N.9 The cutoff values can be computed from the set of equalities (12). Market

shares satisfy the system of equations in (13). Note that this system of equations is triangular

and it has strictly positive diagonal elements (k-th diagonal element is ασk
k−1∏
`=1

(1 − ασ`) > 0).

Therefore the system can be solved for {µk}Nk=0. Once the fractions of students who apply to k

colleges is obtained, one can iteratively compute the corresponding values of the CDF of the costs

of simultaneous search at the cutoffs:

H(ci) = 1−
∑k

i=0
µi where k = 0, 1, ..., N.

9Otherwise, if ασk = 1 for some k < N then from (13) it follows qσN = 0, so Assumption FD is violated.
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In the model of search for differentiated products, the SOSD assumption makes the argu-

ments similar. From the equalities (18) one can compute the cutoff values {cNk }k=1. Using the

market shares in the system of equations (19) we can compute {µk}Nk=0. Again this system is tri-

angular with k-th diagonal element equal to Pr(νk > max{ν1, ν2, ..., νk−1}) > 0. Too see this,

denote by L ⊂ {1, 2, ..., k − 1} the subset of options that fail with strictly positive probabil-

ity. Let ρ(L) be the probability that all options in L fail; by convention ρ(∅) = 1. Then

Pr(νk > max{0, ν1, ν2, ..., νk−1}) ≥ ρ(L) Pr(νk > max
{

0,max{νi : i ∈ L}
}

). If option k succeeds

with probability 1, then by Assumption SOSD, Pr(νk > max{νi : i ∈ L}) > 0. If option k fails

with strictly positive probability, by Assumption FD on free disposal of strictly dominated options,

it must be the case that the upper bound of the support of option k, uk > max{ui : i ∈ L}. As

a result, Pr(νk > max{νi : i ∈ L}) > 0. Once the fractions of consumers sampling k options are

known, one can iteratively compute the corresponding values of the CDF of search costs as before.

(ii) In the general model, the system of market shares might not be invertible and so we may

be unable to solve for {µk}Nk=0. This precludes identification of the search cost distribution at the

cutoffs under Assumption DTA1. To illustrate the problem, let us go back to the case described

above in Example 1 where there are three options in total and f1 = 13, f2 = 18 and f3 = 20, where

f` ≡ f(Σ`), ` = 1, 2, 3. Assume also that Σ1 = {1}, and Σ2 = {2, 3}. Finally, assume that Ψi can

only have an atom at zero. Then, the system of market shares is
q1

q2

q3

 =


Pr[u1 > 0] 0 Pr[u1 > max{0, u2, u3}]

0 Pr[u2 > max{0, u3}] Pr[u2 > max{0, u1, u3}]

0 Pr[u3 > max{0, u2}] Pr[u3 > max{0, u1, u2}]




µ1

µ2

µ3


Notice that the matrix of coefficients in this system need not be triangular. In fact, the system is

not invertible provided that

Pr[u2 > max{0, u3}] Pr[u3 > max{0, u1, u2}] = Pr[u2 > max{0, u1, u3}] Pr[u3 > max{0, u2}].

Under the data assumption DTA2, the econometrician observes {µk}Nk=0 and then the search cost

distribution at the cutoffs is identified.

Proposition 4 gives conditions under which one can identify the sequence of points {ci, H(ci)}Ni=0

of the search cost distribution. Clearly, a limited number of options will not suffice to identify a

density. The question that arises is whether taking a market with a sufficiently large number of

options can allow for the identification of the search cost distribution with enough precision. The

next result argues that it is impossible even if the number of options goes to infinity.
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Proposition 5 Under Assumptions DTA1 or DTA2, the search cost distribution is not identified in

any interval of interest in either of the models (the binary-prize model, the search-for-differentiated-

products model with SOSD and the general model), even if N →∞.

Proof. From Proposition 2, the sequence of cutoffs is weakly decreasing and therefore con-

vergent. As a result, the set of points outside an arbitrarily small neighborhood around the limit

point will necessarily be finite. This implies that the search cost distribution is not identified in

any interval of interest.

Proposition 5 shows that using the type of aggregate data described in Assumption DTA1 and

DTA2 only allows for identification of the costs of simultaneous search around the limit point of

the sequence of cutoffs. This constitutes an important problem because any reasonable study of

the effects of public policy measures aimed at improving the market outcome in any of the settings

described above (for instance, introducing new college options, increasing school places, challenging

a merger between options, etc.) would require the identification of search costs at all quantiles. We

now proceed to study the identification of the search cost distribution in richer settings.

5.2 Joint identification of preferences and search costs

In the previous section we have pointed out that, even if the econometrician knows the preferences

of decision-makers, the search cost distribution cannot be identified using data from a single market.

In this section we argue that by pooling data from several markets it is possible to identify the

search cost distribution non-parametrically.10 Such an identification result would not be very useful

from a practical point of view if preferences of decision-makers were not identifiable. Therefore in

this Section we focus on the joint identification of preferences and search costs.

We study this question in the widely used random utility framework that leads to logit demands.

Therefore, we consider that the payoff of an option i in a certain market is given by

ui = xiβ + εi, (20)

where the vector xi represents the (observable) characteristics of option i, the vector β represents

the importance of each characteristic in the payoff of a decision-maker and εi is a random variable

that represents the match between a decision maker and the option i. We assume εi to be type-I

extreme value distributed.

10This strategy is related to the literature on nonparametric identification of the distribution of random coefficients

in discrete choice models. For example, the identification result in Bajari et al. (2010), although based on a different

formal argument, also requires pooling market share data from several markets.
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We assume that the purpose of searching is to discover the match values εi of the alternatives

chosen to be searched. Meanwhile, the vectors of characteristics xi of the various options are

assumed to be known at the moment the decision-maker chooses her set of alternatives S to be

searched. Once the options in the choice set S are evaluated and the decision-maker learns the

match values, the decision-maker picks one of the options to consume, or else takes the outside

option, whose utility is normalized to zero.

The expected (gross-of-cost) payoff from visiting the set of shops S is

f(S) ≡
∫ (

1−
∏
i∈S

Gi(u)

)
du = γ + log

(∑
i∈S

exp[xiβ]

)
(21)

where γ is the Euler constant. Without loss of generality, assume that the best product ex-ante

has index 1, the second best has index 2, etc., that is, x1β ≥ x2β ≥... ≥ xNβ. Then it is easy

to see that the payoff function f in (21) satisfies the properties from Proposition 3, that is, (i)

f({1, 2, ..., i}) ≥ f({1, 2, ..., i − 1, `}) for all ` ≥ i and (ii) f({1, 2, ..., i}) − f({1, 2, ..., i − 1}) ≥

f({1, 2, ..., i+ 1})−f({1, 2, ..., i}), i = 2, ..., N . Therefore, using (18), the cutoff points are given by

c0 = f ({1})− f (∅) = γ + x1β,

c1 = f ({1, 2})− f ({1}) = log (exp [x1β] + exp [x2β])− x1β,

...

cN−1 = log

(
N∑
i=1

exp[xiβ]

)
− log

(
N−1∑
i=1

exp[xiβ]

)
,

cN = 0. (22)

Note that from (17) and (19) we obtain that H (γ + x1β) = 1− q0.

Suppose that the econometrician observes the market shares and the characteristics of the

options in M different markets. Assume that the vector of characteristics of the best product in

market m, denoted xm1 , is a random draw from a distribution with continuum support such that

the random variables γ + xm1 β0 cover the support of H, where β0 is the true parameter vector.

Then for given β, we can identify the search cost distribution Hβ for which Hβ (γ + xm1 β) = 1−qm0 ,

for all m, on some support that may depend on β. In order to show that the we can identify the

true β0, suppose by contradiction that for another parameter, say β1, we have the same search cost

distribution, that is, Hβ0 = Hβ1 . This implies that γ + xm1 β0 = H−1
β0

(1− qm0 ) = H−1
β1

(1− qm0 ) =

γ + xm1 β1 for all m, so X1 (β0 − β1) = 0, where X1 =
((

x1
1

)′
,
(
x2

1

)′
, ...,

(
xM1
)′)′

. If M is greater

than or equal to the dimension of the vector of characteristics, this can only happen if X1 does not

have full rank, which is a zero-probability event. As a result, we conclude that β0 is identified and

Hβ0 identifies the true search cost distribution. To summarize:
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Proposition 6 Consider the simultaneous search model with logit demand described above. As-

sume the econometrician has market shares data from a sufficiently large number of markets M .

Moreover, assume that product characteristics are random draws from a distribution with continuum

support such that the random variables γ + xm1 β0 cover the support of the search cost distribution

H, where xm1 is the vector of characteristics of the best product in market m, and β0 is the true

parameter vector. Then, the preference parameter vector β0 and the search cost distribution H are

jointly identified.

The reason why pooling data from multiple markets helps identify the search cost distribution

is that variation in xiβ across markets generates variation in the set of search cost cutoffs (22) for

which the econometrician can retrieve the density of search costs. Therefore, by pooling market

share data from many markets, one forces the search cost distribution to be uniquely determined

for a much larger set of points.

6 Concluding remarks

The estimation of consumer search costs in markets constitutes a new and important area of

empirical research. In this paper we have asked whether the costs of simultaneous search can

be non-parametrically identified using data on the market shares and the characteristics of the

different alternatives to be searched. We have shown that employing data from a single market

does not suffice to identify the search cost distribution even if the utility distributions of the different

alternatives are known to the econometrician.

We have then shown that by pooling market share data from multiple markets with varying

alternatives and similar decision makers the search cost distribution and the utility parameters of

the logit demand model are identified. We have adopted the logit demand framework for technical

simplicity. However, our identification result relies on obtaining variation across markets that

causes variation in the search cost cutoffs that are identified from single markets. This strategy

should be successful with other demand structures.

Our study has focused on demand and search cost identification and therefore we have ignored

potential endogeneity of some of the characteristics of the alternatives, for example the price.

Moreover, we have assumed decision-makers are heterogeneous only in search costs. Identification

of models with additional heterogeneity (mixed logit) and price endogeneity is an interesting and

open avenue for further research.11

11In related work, we have studied the identification of search costs in a market with homogeneous products (cf.
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7 Appendix

Proof of Proposition 1. For notational simplicity, denote f` ≡ f(Σ`) for any `. Before providing

the proof we state the following auxiliary result.

Lemma 1 Let j belong to {1, 2, ..., h− 1}. Under the conditions of Proposition 1 the inequality

min

{
fk+j − fk

j
,
fk+j − fk+1

j − 1
, ..., fk+j − fk+j−1

}
≤ max

{
fk+j+1 − fk+j ,

fk+j+2 − fk+j

2
, ...,

fk+h − fk+j

h− j

}
(23)

Proof. The inequalities in (ii) can be written as

min
`<k+j

{
fk+j − f`
k + j − `

}
≤ max

`>k+j

{
f` − fk+j

`− (k + j)

}
.

Note that

min
`<k+j

{
fk+j − f`
k + j − `

}
= min

{
min
`<k

{
fk+j − f`
k + j − `

}
,
fk+j − fk

j
,
fk+j − fk+1

j − 1
, ..., fk+j − fk+j−1

}
(24)

and

max
`>k+j

{
f` − fk+j

`− (k + j)

}
= max

{
max
`>k+h

{
f` − fk+j

`− (k + j)

}
, fk+j+1 − fk+j ,

fk+j+2 − fk+j

2
, ...,

fk+h − fk+j

h− j

}
.

(25)

By condition (i)

max
`>k

{
f` − fk
`− k

}
≤ min

`<k

{
fk − f`
k − `

}
or

fk+j − fk
j

≤ fk − f`
k − `

for all ` < k,

Moraga-González, Sándor and Wildenbeest, 2010). The approach there is quite different because identification with

endogenous prices does not require the use of instruments, as opposed to the case of differentiated products where it

does. Moreover, since with homogeneous products equilibrium is characterized by mixed strategies, information on

market shares is not necessary.
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which is equivalent to12

fk+j − fk
j

≤
fk+j − f`
k + j − `

for all ` < k,

that is,
fk+j − fk

j
≤ min

`<k

{
fk+j − f`
k + j − `

}
.

Therefore, by (24)

min
`<k+j

{
fk+j − f`
k + j − `

}
= min

{
fk+j − fk

j
,
fk+j − fk+1

j − 1
, ..., fk+j − fk+j−1

}
. (26)

Further, from condition (iii)

max
`>k+h

{
f` − fk+h

`− (k + h)
≤ min

`<k+h

{
fk+h − f`
k + h− `

}}
or

f` − fk+h

`− (k + h)
≤
fk+h − fk+j

h− j
for all ` > k + h,

which is equivalent to
f` − fk+j

`− (k + j)
≤
fk+h − fk+j

h− j
for all ` > k + h.

Therefore, by (25)

max
`>k+j

{
f` − fk+j

`− (k + j)

}
= max

{
fk+j+1 − fk+j ,

fk+j+2 − fk+j

2
, ...,

fk+h − fk+j

h− j

}
. (27)

Based on (ii), (26), (27), we obtain the result. �

We now proceed with the proof of Proposition 1. We need to prove that ck =
fk+h−fk

h and

ck+h =
fk+h−fk

h . Using (6) and (7), this is equivalent to showing that

fk+h − fk
h

≥ f` − fk
`− k

for all k < ` ≤ N and (28)

fk+h − fk
h

≤ fk+h − f`
k + h− `

for all 0 ≤ ` < k + h, (29)

12This follows from

fk+j − fk
j

≤ fk − f`
k − ` for all ` < k,

m

(k − `) (fk+j − fk) ≤ j (fk − f`) for all ` < k,

m

(k − `) (fk+j − fk) + j (fk+j − fk) ≤ j (fk − f`) + j (fk+j − fk) for all ` < k,

m

(k + j − `) (fk+j − fk) ≤ j (fk+j − f`) for all ` < k,

m
fk+j − fk

j
≤ fk+j − f`

k + j − ` for all ` < k,
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respectively. The inequality (iii) implies

min
`<k+h

{
fk+h − f`
k + h− `

}
≥ max

`>k+h

{
f` − fk+h

`− (k + h)

}
fk+h − fk

h
≥ f` − fk+h

`− (k + h)
for all ` > k + h,

so for (28) we only need to prove that

fk+h − fk
h

≥ fk+i − fk
i

for all i with 1 ≤ i ≤ h− 1. (30)

The inequality (i) implies
fk+h − fk

h
≤ fk − f`

k − `
for all ` < k,

which is equivalent to
fk+h − fk

h
≤ fk+h − f`

h− `
for all ` < k,

so in order to show (29) we only need to prove that

fk+h − fk
h

≤ fk+h − fk+i

h− i
for all i with 1 ≤ i ≤ h− 1.

This is, however, equivalent to (30), so by showing (30) we can establish both (28) and (29). That

is what we do in the remaining of this proof.

In proving (30) we proceed by induction with respect to i. First we prove (30) for i = 1, that

is,

fk+1 − fk ≤
fk+h − fk

h
.

If h = 1 then there is nothing to prove. Assume h ≥ 2. By (23) for j = 1 we have

fk+1 − fk ≤ max
`∈[2,h]

{
fk+` − fk+1

`− 1

}
, (31)

where [2, h] ≡ {2, 3, ..., h}. Let `1 ∈ [2, h] such that

max
`∈[2,h]

{
fk+` − fk+1

`− 1

}
=
fk+`1 − fk+1

`1 − 1
. (32)

We argue that

fk+1 − fk ≤ min

{
fk+`1 − fk

`1
,
fk+`1 − fk+1

`1 − 1
, ..., fk+`1 − fk+`1−1

}
. (33)

Indeed, (31) and (32) imply that fk+1 − fk ≤
fk+`1−fk+1

`1−1 , which is equivalent to

fk+1 − fk ≤
fk+`1 − fk

`1
. (34)
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Also, (32) implies that
fk+`−fk+1

`−1 ≤ fk+`1−fk+1

`1−1 for any ` ∈ [2, h], which implies
fk+`1−fk+1

`1−1 ≤
fk+`1−fk+`

`1−` for any ` ∈ [2, `1 − 1]. So fk+1 − fk ≤
fk+`1−fk+`

`1−` for any ` ∈ [0, `1 − 1] and (33) follows.

By (23) for j = `1 and (33)

fk+1 − fk ≤ max
`∈[`1+1,h]

{
fk+` − fk+`1

`− `1

}
. (35)

Let `2 ∈ [`1 + 1, h] such that

max
`∈[`1+1,h]

{
fk+` − fk+`1

`− `1

}
=
fk+`2 − fk+`1

`2 − `1
. (36)

Now, similar to (33), we argue that

fk+1 − fk ≤ min

{
fk+`2 − fk

`2
,
fk+`2 − fk+1

`2 − 1
, ..., fk+`2 − fk+`2−1

}
. (37)

Indeed, (35) and (36) imply that

fk+1 − fk ≤
fk+`2 − fk+`1

`2 − `1
, (38)

which together with (33) implies fk+1 − fk ≤
fk+`2−fk+`

`2−` for any ` ∈ [0, `1]. Also, (36) implies

that
fk+`−fk+`1

`−`1 ≤ fk+`2−fk+`1
`2−`1 for any ` ∈ [`1 + 1, h], which implies

fk+`2−fk+`1
`2−`1 ≤ fk+`2−fk+`

`2−` for any

` ∈ [`1 + 1, `2 − 1]. These imply (37).

We can continue this procedure up to some step s so that we obtain

fk+1 − fk ≤
fk+`j − fk+`j−1

`j − `j−1
for j = 1, ..., s, (39)

where `0 = 0. The sequence (`j)
s
j=1 is strictly increasing, so for some finite s we get `s = h. By

summing (39) for j = 1, ..., s we get the desired result.

The next step in the induction with respect to i is to assume that (30) holds for 1, 2, ..., i − 1,

that is,

fk+1 − fk ≤
fk+h − fk

h
,
fk+2 − fk

2
≤ fk+h − fk

h
, ...,

fk+i−1 − fk
i− 1

≤ fk+h − fk
h

. (40)

We now prove it for i. By (23) for j = i

min
`∈[0,i−1]

{
fk+i − fk+`

i− `

}
≤ max

`∈[i+1,h]

{
fk+` − fk+i

`− i

}
. (41)

We treat the following two cases separately.

(i) min`∈[0,i−1]

{
fk+i−fk+`

i−`

}
=

fk+i−fk+r
i−r with r ∈ [1, i− 1];

(ii) min`∈[0,i−1]

{
fk+i−fk+`

i−`

}
=

fk+i−fk
i .
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In case (i) we have
fk+i − fk+r

i− r
≤ fk+i − fk

i
,

which is equivalent to
fk+i − fk

i
≤ fk+r − fk

r
,

and (30) follows by (40).

In case (ii) we have

fk+i − fk
i

≤ fk+i − fk+`

i− `
for all ` ∈ [0, i− 1] . (42)

Further, let `1 ∈ [i+ 1, h] be such that

max
`∈[i+1,h]

{
fk+` − fk+i

`− i

}
=
fk+`1 − fk+i

`1 − i
,

so
fk+i − fk

i
≤ fk+`1 − fk+i

`1 − i
(43)

by (41) and
fk+` − fk+i

`− i
≤ fk+`1 − fk+i

`1 − i
for all ` ∈ [i+ 1, h] . (44)

Then, similar to the proof of the case for i = 1, we show that

fk+i − fk
i

≤ min
`∈[0,`1−1]

fk+`1 − fk+`

`1 − `
, i.e.,

fk+i − fk
i

≤ fk+`1 − fk+`

`1 − `
for all ` ∈ [0, `1 − 1] . (45)

Indeed, (42) and (43) are equivalent to

(i− `) (fk+i − fk) ≤ i (fk+i − fk+`) for all ` ∈ [0, i− 1] and

(`1 − i) (fk+i − fk) ≤ i (fk+`1 − fk+i) ,

respectively, which by summing imply

fk+i − fk
i

≤ fk+`1 − fk+`

`1 − `
for all ` ∈ [0, i− 1] . (46)

Further, (44) implies

fk+`1 − fk+i

`1 − i
≤ fk+`1 − fk+`

`1 − `
for all ` ∈ [i+ 1, `1 − 1] ,

which by (43) implies

fk+i − fk
i

≤ fk+`1 − fk+`

`1 − `
for all ` ∈ [i+ 1, `1 − 1] . (47)
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Then (45) follows by (43), (46), (47).

At this stage we can invoke the inequality (23) for j = `1 to get

fk+i − fk
i

≤ max
`∈[`1+1,h]

{
fk+` − fk+`1

`− `1

}
. (48)

Let `2 ∈ [`1 + 1, h] such that

max
`∈[`1+1,h]

{
fk+` − fk+`1

`− `1

}
=
fk+`2 − fk+`1

`2 − `1
. (49)

We will show that

fk+i − fk
i

≤ min
`∈[0,`2−1]

{
fk+`2 − fk+`

`2 − `

}
, i.e.,

fk+i − fk
i

≤ fk+`2 − fk+`

`2 − `
for all ` ∈ [0, `2 − 1] . (50)

By (48) and (45)

(`2 − `1) (fk+i − fk) ≤ i (fk+`2 − fk+`1) ,

(`1 − `) (fk+i − fk) ≤ i (fk+`1 − fk+`) for all ` ∈ [0, `1 − 1] ,

which by summation implies

fk+i − fk
i

≤ fk+`2 − fk+`

`2 − `
for all ` ∈ [0, `1 − 1] . (51)

By (48) and (49)
fk+i − fk

i
≤ fk+`2 − fk+`1

`2 − `1
(52)

and
fk+` − fk+`1

`− `1
≤ fk+`2 − fk+`1

`2 − `1
for all ` ∈ [`1 + 1, h] ,

which implies
fk+`2 − fk+`1

`2 − `1
≤ fk+`2 − fk+`

`2 − `
for all ` ∈ [`1 + 1, `2 − 1] .

This together with (52) implies

fk+i − fk
i

≤ fk+`2 − fk+`

`2 − `
for all ` ∈ [`1 + 1, `2 − 1] .

This, (51) and (52) imply (50).

Similar to the case i = 1, we can continue this procedure up to some step s so that we obtain

fk+i − fk
i

≤
fk+`j − fk+`j−1

`j − `j−1
for j = 1, ..., s, (53)

where `0 = 0. The sequence (`j)
s
j=1 is strictly increasing, so for some finite s we get `s = h. By

summing (53) for j = 1, ..., s we get the desired result. �
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Proof of Proposition 2. We show that ck+1 ≤ ck. The interesting case is when ck+1 ≤ ck+1

because if ck+1 > ck+1 then ck+1 = ck. First consider the case when ck ≤ ck. Then by (8)

and Proposition 1 (with h = 1) ck+1 = ck+1 ≤ ck+1 = ck = ck. Next consider the case when

ck > ck. Let ` < k be the largest i such that ci ≥ ci. Assume, for the moment, that c1 ≥ c1.

Then ` ≥ 1. Then Proposition 1 implies that ck+1 = c`, so ck+1 = ck+1 ≤ ck+1 = c` = c`, and

since ck > ck, ck−1 > ck−1, ..., c`+1 > c`+1, by (8) ck = ck−1 = ... = c`; therefore, ck+1 ≤ ck. To

complete the argument, we prove that c1 ≥ c1, which follows from the following Lemma because

the inequality c1 ≥ c1 is equivalent to (f(Σ`)− f(Σ1)) / (`− 1) ≤ f(Σ1) for all ` > 1, which is

equivalent to f(Σ`)/` ≤ f(Σ1) for all ` > 1.

Lemma 2 f(Σk)/k is decreasing in k for k ≥ 1.

Proof. We show f(Σk+1)/ (k + 1) ≤ f(Σk)/k for arbitrary k, which is equivalent to∫ u

0

1− (k + 1)
∏
i∈Σk

Ψi(u) + k
∏

i∈Σk+1

Ψi(u)

 du ≥ 0. (54)

By optimality of Σk, we know that∏
i∈Σk

Ψi(u) ≤
∏

i∈Σk+1\{h}

Ψi(u) for all h ∈ Σk+1.

Summing with respect to h ∈ Σk+1 we obtain that

(k + 1)
∏
i∈Σk

Ψi(u) ≤
∑

h∈Σk+1

∏
i∈Σk+1\{h}

Ψi(u).

Substituting this into (54) gives∫ u

0

1− (k + 1)
∏
i∈Σk

Ψi(u) + k
∏

i∈Σk+1

Ψi(u)

 du ≥
∫ u

0

1−
∑

h∈Σk+1

∏
i∈Σk+1\{h}

Ψi(u) + k
∏

i∈Σk+1

Ψi(u)

 du,

so we need to show that∫ u

0

1−
∑

h∈Σk+1

∏
i∈Σk+1\{h}

Ψi(u) + k
∏

i∈Σk+1

Ψi(u)

 du ≥ 0.

This will follow from the fact that if a1, a2, ..., ak+1 ∈ [0, 1] and Sk+1 = {1, 2, ..., k + 1} then

Pk = 1−
k+1∑
h=1

∏
i∈Sk+1\{h}

ai + k

k+1∏
i=1

ai ≥ 0.

This can be proved by induction by noting that

P1 = 1− (a1 + a2) + a1a2 = (1− a1) (1− a2) ≥ 0
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and

Pk =

(
1−

k∏
i=1

ai

)
(1− ak+1) + ak+1Pk−1 for k ≥ 2.

This is because(
1−

k∏
i=1

ai

)
(1− ak+1) + ak+1Pk−1

=

(
1−

k∏
i=1

ai

)
(1− ak+1) + ak+1

1−
k∑

h=1

∏
i∈Sk\{h}

ai + (k − 1)
k∏
i=1

ai


= 1−

k∏
i=1

ai − ak+1 +

k+1∏
i=1

ai + ak+1 − ak+1

 k∑
h=1

∏
i∈Sk\{h}

ai

+ (k − 1)

k+1∏
i=1

ai

= 1 + k

k+1∏
i=1

ai −
k∏
i=1

ai − ak+1

 k∑
h=1

∏
i∈Sk\{h}

ai


= 1 + k

k+1∏
i=1

ai −
∏

i∈Sk+1\{k+1}

ai −
k∑

h=1

∏
i∈Sk+1\{h}

ai

= 1−
k+1∑
h=1

∏
i∈Sk+1\{h}

ai + k
k+1∏
i=1

ai = Pk.

�

The proof of Proposition 2 is now complete. �
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