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Abstract

I analyze the e¤ects of competition on process innovation and product introduction

and obtain robust results that hold for a range of market structures and competition

modes. It is found that increasing the number of �rms tends to decrease cost reduction

expenditure per �rm, whereas increasing the degree of product substitutability, with or

without free entry, increases it� provided that the average demand for product varieties

does not shrink. Increasing market size increases cost reduction expenditure per �rm

and has ambiguous e¤ects on the number of varieties o¤ered, while decreasing the

cost of entry increases the number of entrants and varieties but reduces cost reduction

expenditure per variety. The results are extended to other measures of competitive

pressure and to investment in product quality. The framework and results shed light

on empirical strategies to assess the impact of competition on innovation.

Keywords: R&D, cost reduction, X-ine¢ ciency, market concentration, market size,

substitutability, product introduction, entry, corporate governance, globalization
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1 Introduction

This paper provides general and robust results on the e¤ect of indicators of competitive

pressure on innovation, reconciles theory with available empirical results, and provides a

framework to help guiding the empirical analysis with results that do not depend on the

�ne details of market structure. The central question to examine is whether competitive

pressure fosters innovation.

Innovation is claimed to be the engine of growth (see e.g. Romer (1990), Aghion and

Howitt (1992, 1998), Grossman and Helpman (1989, 1991,1994)) and therefore it is crucial to

understand its determinants. Furthermore, questions arise about the impact of globalization

and deregulation on the incentives to innovate. The impact of globalization comes typically

with market enlargement; regulatory reform has introduced price caps, i.e., direct price

pressure, and has lowered barriers to entry in di¤erent industries. What will be the impact

of these developments on process and product innovation?

There is by now a large body of work, going back at least to Schumpeter and continuing

with Arrow (1962) and many other scholars, with regard to the e¤ect of competitive pressure

on innovation e¤ort. Schumpeter himself oscillated between thinking that monopoly rents

or competitive pressure (in particular the entry threat of rival innovators) were the drivers of

innovation although usually only the monopoly driver is emphasized in the interpretation of

his work. Schumpeter also hypothesized a positive relationship between �rm size and R&D.

One stumbling block in the analysis of competition and innovation is the use of particular

functional forms. Another, the lack of agreement between theory and empirics. Let us take

the issues in turn.

Theoretical work, be it in industrial organization, agency theory or endogenous growth

theory, has relied on particular functional speci�cations. Leading models of process inno-

vations like Dasgupta and Stiglitz (1980) and Spence (1984) use constant elasticity func-

tional forms; Bester and Petrakis (1993) and Qiu (1997) compare innovation incentives

in Cournot and Bertrand markets with a linear-quadratic speci�cation. Similarly, models

of X-ine¢ ciency in which there is an agency problem between owners and managers rely

on very simple and parameterized speci�cations of market competition. This is the case,
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for instance, in the linear model of Martin (1993), the examples in Schmidt (1997), and

the linear-quadratic model of Raith (2003). The constant elasticity speci�cation, derived

from Dixit and Stiglitz (1977), has become also a workhorse in endogenous growth models

with product introduction providing an ever expanding variety of horizontally di¤erenti-

ated products in a growing market (Romer (1990) and Grossman and Helpman (1989)).

Rivera-Batiz and Romer (1991) show that international economic integration by expanding

the market size incentivates innovation. One may wonder whether the results obtained are

robust to more general speci�cations. The contribution of the present paper is to obtain

results within a general model.

Some theoretical results do not seem to agree with the empirical evidence. Indeed, quite

a few theoretical models tend to conclude that competition reduces innovation e¤ort �at

least at the individual �rm level�despite the fact that available empirical evidence (Porter

(1990), Geroski (1990, 1994), Baily and Gersbach (1995), Nickell (1996), Blundell, Gri¢ th

and Van Reenen (1999), Symeonidis (2002), and Galdón-Sánchez and Schmitz (2002)) using

di¤erent measures of competitive pressure is favorable to the positive e¤ect of competition

on innovation. For example, Dasgupta and Stiglitz (1980) and Spence (1984) �nd that

increasing the number of �rms, a typical measure of increased competitive pressure, reduces

cost reduction expenditure per �rm; and Romer (1990); Aghion and Howitt (1992), and

Grossman and Helpman (1991) �nd that decreasing rents reduce product introduction and

productivity growth. The contribution of the paper is to clarify the robust relationships

between di¤erent measures of competitive pressure and R&D. In so doing the paper provides

a guide for empirical work.

The benchmark model for the analysis is a symmetric reduced�form non�tournament

model, where the investment by a �rm always yields some R&D cost reduction results � in

contrast to a patent race with its winner�take�all feature, where there are no spillovers and

R&D investment has no strategic commitment value.

I will consider price and quantity competition as well as restricted and free entry. The

models considered are the central workhorses in oligopoly theory: Bertrand (price) compe-

tition with product di¤erentiation and Cournot (quantity) competition with homogenous

products. All cases are empirically relevant although perhaps Bertrand competition with
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di¤erentiated products and free entry is more salient. We follow the tradition of Dasgupta

and Stiglitz (1980) and Sutton (1991, 1998) of emphasizing the endogeneity of market struc-

ture. In this situation a �rm decides whether to enter the market producing a new variety

(product introduction), and paying a �xed cost of entry, and how much to invest in R&D

reducing variable costs of production (process innovation). The model displays thus the typ-

ical trade-o¤ between �xed and variable costs of previous work in the literature. I perform

also a robustness check when investments have strategic commitment value, when spillovers

are present, and comment on how far the results extend to investment in quality.

It is worth noting that the trade-o¤ between �xed and variable costs not only includes

R&D and cost�reduction models but also agency models where owners incentivate managers

to reduce costs in an asymmetric information context (X-ine¢ ciency). That is, the �rm (or

the principal) incurs in a �xed cost in order to lower variable costs. In agency models the

innovation incentive of owners typically translates monotonically, via the incentive scheme

of the manager, into the managers�incentives. The owner must pay the manager his reser-

vation utility, the cost of e¤ort, and an information rent (owing to asymmetric information)

in order to reduce costs. In this way, for example, more competition may induce a higher

cost�reduction e¤ort through an incentive scheme that is more sensitive to performance.1

The central scenario considered is plausible on empirical grounds. With regard to the

non�tournament aspect, patents (inducing a patent race or tournament) do not seem to be

the major source of returns to innovative activity (Schankerman (1991) and Cohen et al.

(2000))2 and, according to Cohen,�The empirical �ndings to date do not establish whether

the net e¤ect of appropriability on R&D incentives is positive or negative�(1995, p. 230).

Furthermore, it is worth remarking that even though R&D investment typically precedes

market interaction, this does not mean that it can be used strategically. That is, it does not

follow that R&D investment, or contracts with managers that reward e¤ort, are observable

1Competition may also provide information (e.g., on the cost structure of �rms) and enlarged opportu-

nities for comparison, and therefore stronger incentives. The informational role of competition in enhancing

e¢ ciency has been highlighted in a series of models. I will not pursue this line of inquiry in this paper but

see Hart (1983), Scharfstein (1988), Hermalin (1992, 1994), and Meyer and Vickers (1997).
2Recent empirical analysis does not seem to favor the patent race model (with its �rst-mover advantage).

See Tellis and Golder (1996) and Lieberman and Montgomery (1998).
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and that �rms can commit to it. The evidence on the strategic commitment value of R&D

is scant.3 No claim is made about the realism of the symmetry assumption.

I consider two (classical) di¤erent possible measures of enhanced competitive pressure

with restricted entry (exogenous market structure), as an increase4

� in the degree of product substitutability; or

� in the number of competitors.

With free entry (endogenous market structure), enhanced competitive pressure is mea-

sured as an increase

� in the degree of product substitutability; or

� in the size of the market; or

� in the ease of entry (decrease in the entry cost).

The size of the market increases with reductions in trade, regulatory and transport costs

in liberalization and globalization processes.

In the scenario considered, individual �rms� cost�reduction incentives depend on the

output per �rm because the value of a reduction in unit costs will increase with the output

produced by the �rm. Output per �rm depends in turn on demand and price�pressure

e¤ects. For a given total market size, competition a¤ects the e¤ective market of a �rm, its

residual demand (a level or size e¤ect), and the elasticity of the residual demand faced by the

�rm (an elasticity e¤ect). For example, typically an increase in the number of competitors

for a given total market size will decrease the residual demand for the �rm and will increase

3At the same time, it is possible that strategic e¤ects have been overplayed in the literature. For example:

�Despite the considerable theoretical attention devoted to strategic interaction, we know surprisingly little

about its empirical relevance� (Cohen (1995, p. 234; see also Griliches (1995)). Geroski (1991) also hints

that strategic e¤ects may be of second�order importance in determining innovation incentives.
4Sometimes a change from Cournot to Bertrand behavior is interpreted as an increase in competitive

pressure. This may be so, since Bertrand equilibria tend to be more competitive than Cournot, but this

interpretation need not make sense within a given industry. Indeed, the mode of competition is typically

dictated by the structural conditions in the industry (see Vives (1999, Chap.7)).
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the demand elasticity. The �rst e¤ect will tend to decrease cost reduction expenditure,

because a unit cost reduction will bene�t a diminished output, whereas the second will tend

to increase it, because a unit reduction in costs will allow the �rm to decrease price with a

higher output impact.5

Product introduction incentives depend on the pro�ts to be captured (rents) as compared

to the �xed cost of introduction of the new product. In this context, less rents due to higher

(ex post) competition mean less entry (this is a well-known e¤ect which we could term a

Schumpeter e¤ect).

I obtain the following results in a market with restricted entry:

� Increasing the number of �rms tends to decrease cost reduction expenditure per �rm.

In Bertrand the result holds for all leading examples (including linear, constant elas-

ticity, constant expenditure, and logit demand systems). In Cournot the result holds

in the usual case of outputs being strategic substitutes. The residual demand (size)

e¤ect tends to dominate the price�pressure (elasticity) e¤ect. The reason is that

the demand e¤ect is a direct one while the price�pressure e¤ect is an induced one

through the impact on the equilibrium price. However, it is still possible, and indeed

likely, that increasing the number of �rms increases R&D intensity (i.e. cost reduction

expenditure over sales).

� Increasing the degree of product substitutability increases cost reduction expenditure

per �rm provided the average demand for varieties (de�ned in terms of the Chamber-

linian DD demand function for simultaneous price movements) does not shrink. The

reason is that the demand e¤ect and the price�pressure e¤ect both work, although

perhaps weakly, in the same direction. This holds for leading examples such as linear

(Shapley�Shubik speci�cation), constant elasticity, and constant expenditure demand

systems. With logit there is neither demand e¤ect nor price�pressure e¤ect.

The results in a market with restricted entry generalize those obtained by (among others)

Dasgupta and Stiglitz (1980), Spence (1984), Tandon (1984), and Martin (1993) in the
5See Kamien and Schwartz (1970) and Willig (1987) for related analyses. Asymmetric market structures

introduce a selection e¤ect of competition. See Boone (2000), Klette and Kortum (2004) and Nocke (2006)

for an analysis of innovation incentives with �rm heterogeneity.
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context of a Cournot model with constant elasticity or linear speci�cations, and by Raith

(2003) with price competition and product di¤erentiation à la Salop (1979).

In a market with free entry I �nd the following:

� Increasing the market size increases per��rm output and cost reduction expenditure.

However, the number of �rms and varieties may increase or diminish. The results

hold for either Bertrand or Cournot competition. Increasing the market size has a

direct positive impact on cost reduction expenditure and output per �rm, but at

the same time it may increase the free�entry number of �rms. However, the latter

increases less than proportionately, owing to the reduction in margins, and the direct

e¤ect prevails. In fact, the free�entry number of �rms may even decrease with market

size. The reason is that the increase in market size may induce such an increase in

expenditure on cost reduction that it may leave less room for entry. In a constant

elasticity example with no entry cost, the free�entry number of �rms is independent of

market size (Dasgupta and Stiglitz (1980)). Nonetheless the case of a positive e¤ect

of market size on product introduction is possibly more likely because of its direct

pro�tability�enhancing impact.

� Decreasing the entry cost increases the number of �rms (varieties) introduced but

decreases output and cost reduction expenditure per �rm. The �rst result is very

intuitive and implies the second: once more �rms have entered we know that there

are less incentives to invest in cost reduction. Still typically the industry cost reduction

expenditure will increase with lower entry costs.

� Increasing the degree of product substitutability increases per��rm output and cost

reduction expenditure provided the average demand for varieties does not shrink. The

number of varieties introduced may diminish (and it will do so if the average demand

for varieties does not expand). The reason of the latter result is that the increase

in competitive pressure leaves less room for entrants. If this happens it should be

clear that per �rm output and cost reduction expenditure should increase because of

increased price pressure with less entry. If the market where to expand with the degree

of product substitutability then the direct e¤ect on per �rm output and cost reduction
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expenditure would overcome any possible adverse e¤ect of a possible increase in the

number of entrants.

Schmookler (1959, 1962) emphasized the role of demand and market size in the innova-

tion incentive and stated that innovative activity is governed by the extent of the market.

Process innovation is enhanced in larger markets but not necessarily product introduction.

The result that larger markets may accommodate fewer �rms (and varieties) is consistent

with the parameterized examples in Sutton (1991) where he studies the relationship between

concentration and the size of the market, product substitutability and entry costs taking into

account �xed investments to improve quality or lower costs. The intuition is that a larger

market may make R&D competition so �erce that fewer �rms may be able to survive (and

cover their �xed cost). In a Cournot market we show that there is a �nite number of �rms,

for any exogenous entry cost, however small, provided that the inverse elasticity of demand

is bounded above and the elasticity of the innovation possibility curve bounded below. This

is akin to the "�niteness" or "natural oligopoly" results of Gabszewicz and Thisse (1979)

and Shaked and Sutton (1983) in the context of a model of vertical di¤erentiation.

Decreasing barriers to entry (by lowering the entry cost) will indeed induce more �rms

(and varieties) to enter but will diminish the incentive of each �rm to produce and invest

in cost reduction. The result that increasing product substitutability increases innovation

e¤ort but may decrease the number of varieties introduced is consistent with the �ndings in

Boone (2000) for symmetric market structures. The results also generalize those obtained

by Raith (2003).

The plan of the paper is as follows. Section 2 considers Bertrand markets with product

di¤erentiation analyzing the cases of restricted and free entry. Section 3 summarizes the

results and develops the empirical implications. Section 4 performs a robustness analysis

in Cournot markets with homogeneous products. Section 5 explores extensions of the re-

sults (an alternative measure of competitive pressure, quality innovation, and the e¤ect of

spillovers). Concluding remarks close the paper, and the Appendix collects several proofs

and the details of the examples.
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2 Bertrand competition with product di¤erentiation

In this section I consider Bertrand markets with di¤erentiated products. I start with the

case with restricted entry and perform a comparative statics exercise with the number of

�rms and with the degree of product substitutability (Section 2.1). A robustness exercise

with respect to the strategic commitment e¤ect of R&D is performed and I comment also

on using a switch from Cournot to Bertrand competition to indicate a higher competitive

pressure. I consider then the case of free entry and study the comparative statics properties

with respect to the degree of product substitutability, size of the market, and entry cost.

Consider a di¤erentiated product market with n �rms, where each �rm produces a

di¤erent variety and F � 0 is the sunk cost of entry. The demand system for the varieties

is symmetric and is given by the smooth (whenever demand is positive) and exchangeable

functions xi = SDi(p), p = (p1; :::; pn); i = 1; :::; n, where S denotes the size of the market

(number of consumers, say).6 Demand is downward sloping @Di
@pi

< 0, products are gross

substitutes @Di@pj
> 0; j 6= i, and the Jacobian of the demand system is negative de�nite.

Firm i can invest zi in R&D to reduce its constant marginal cost of production ci

according to a smooth innovation function ci = c (zi) with c (z) > 0, c0 (z) < 0, and c00 (z) >

0 for all z > 0. The level of the innovation function c (�) can be taken to be an indicator

of the underlying scienti�c base in the industry. The elasticity of the innovation function


 (z) � �zc0 (z) =c (z) provides an index of opportunities to innovate in the industry, with a

higher 
 (�) indicating increasing opportunities, and is an important determinant of market

structure and endogenous variables. The cost for �rm i of producing output xi is c (zi)xi.

The pro�ts for �rm i are therefore

�i = (pi � c (zi))SDi (p)� zi � F:
6That is, interchanging the prices of rival goods does not a¤ect the demand for any good (as a function of

its own price) and any two goods that sell at the same price have the same demand. Formally, the demand

system can be described by a unique demand function for any good depending on its own price and the

prices of rivals, Di(pi; p�i) = D(pi; p�i) for all i.
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2.1 Restricted entry: Price�pressure and demand e¤ects

Let the number of �rms n be �xed and S = 1. Consider the simultaneous�move game

in which each �rm chooses an investment�price pair. This can be interpreted also as an

open�loop strategy in a two�stage investment�price game (or just a two�stage game where

actions in the �rst stage are not observable).

Let H (p; �) � Di (p; :::; p; �) be the demand for a variety when all �rms set the same

price (the Chamberlininan DD function) where � is a parameter that a¤ects demand. H is

a measure of the average demand for varieties. I will consider � = n, the number of �rms,

and � = �, a measure of product substitutability (typically, the elasticity of substitution

between any two products, either the Allen-Hicks or the direct elasticity of substitution). For

convenience we will think of n as a continuous variable but all results hold with n discrete.

It follows from our assumptions that @H@p (p; �) �
@Di
@pi

(p; :::; p; �)+
P
j 6=i

@Di
@pj

(p; :::; p; �) < 0.7

Let h (p; �) � @Di
@pi

(p; :::; p; �) and note that h (p; �) < 0. The parameter � will be suppressed

to ease notation in functions when no confusion is possible. A very wide range of demand

systems ful�ll the assumptions.

Fix a symmetric pro�le of investment zi = z and consider an associated (interior)

symmetric Bertrand equilibrium p(z; �). In equilibrium we have that

L � p� c
p

=
1

�
,

where L is the Lerner index and

� � � p

H (p; �)
h (p)

is the (absolute value of the) elasticity of demand for an individual �rm.

If � = n then typically @�
@n > 0, and increasing the number of �rms increases the elas-

ticity of demand and decreases prices. If � = � then typically @�
@� > 0, and increasing

product substitutability decreases prices.8 Table 1 provides properties of examples of sev-

eral commonly used demand systems: linear (Shapley�Shubik (1969) and Bowley (1924)
7See Vives (1999, Sec. 6.3).
8Suppose that demands come from a representative consumer with (strictly quasiconcave) utility function

U(x0; x), where x is the vector of di¤erentiated commodities and x0 is the numéraire (this a generalization of

the quasilinear case, for which W (x0; x) = x0 +U(x)). For a symmetric allocation, denote by � the (Allen�

Hicks) elasticity of substitution between any pair of di¤erentiated goods, by �0 the elasticity of substitution
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speci�cations), location (Salop (1979)), constant elasticity, constant expenditure demand

systems (with exponential and constant elasticity speci�cations) and logit.

between the numéraire and a di¤erentiated good, and by �I the income elasticity of the demand for a

di¤erentiated good. Assuming that the latter is bounded, at a symmetric Bertrand equilibrium we have

� = ��0+(1� �)� (n� 1)n�1+(1� �) �In�1, where � is the expenditure share of the numéraire good. It

is clear that � increases with �. Increasing n has a more complex e¤ect in the formula, but typically it will

(among other e¤ects) increase � by weakly increasing �. See Benassy (1989) and Vives (1999, Sec. 6.4).
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From the structure of the pro�t function �i it should be clear that the incentive to

reduce cost is larger when the �rm produces a larger output. The question therefore is

how parameter changes a¤ect output in equilibrium. Let x (z; �) � H (p(z; �); �) be the

equilibrium output per �rm in the Bertrand equilibrium for a given z. The decomposition

@x

@�
=
@H

@p

@p

@�
+
@H

@�

is instructive. The term
@H

@p

@p

@�

is the price�pressure e¤ect: increasing � decreases p (in the leading examples considered

with either � = n or � = �), which in turn increases demand. The term

@H

@�

is the demand e¤ect: the direct impact of � on demand. We will see how, when � = n, the

price�pressure and the demand e¤ects have di¤erent signs, provided the average demand

for the di¤erentiated varieties is decreasing in n (@H=@n < 0), and the latter e¤ect typically

dominates as we will see. The basic reason for the dominance is that the price�pressure

e¤ect is an indirect one while the demand e¤ect is a direct one. On the other hand, if � = �

then typically both the price�pressure e¤ect and the demand e¤ect (weakly) work in favor

of more output and R&D expenditure. Indeed, there is no presumption that increasing the

elasticity of substitution will decrease the average demand for varieties.

We say that a symmetric and interior equilibrium is regular if (at the equilibrium)

B �
�
(p� c) @h@p + h+

@H
@p

�
c00H + (c0)2 h@H@p < 0. This condition is used in Proposition

1, which provides the comparative statics analysis of innovation e¤ort with respect to the

number of �rms (� = n) and product substitutability (� = �).

Proposition 1 Let the demand system ful�ll @Di@pi
< 0 and @Di

@pj
> 0 for j 6= i with nega-

tive de�nite Jacobian, and let c0 < 0 and c00 > 0: Consider a symmetric regular interior

equilibrium (p�; z�). Then the following statements hold.

(i)

sign

�
dz�

d�

�
= sign

�
@x (z; �)

@�

�
= sign

�
@H

@p

@p(z; �)

@�
+
@H

@�

�
,
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where (p(z; �); x (z; �)) is the symmetric Bertrand equilibrium for given � and z.

(ii) When changing the number of �rms n for linear, constant elasticity, logit, and

constant expenditure demand systems, we have @H
@n < 0 and @�

@n > 0; the demand e¤ect

dominates the price�pressure e¤ect, and @x(z;n)
@n < 0.9

(iii) When varying product substitutability � in all cases considered, @�@� > 0. For linear

(Shapley�Shubik speci�cation), logit, and constant expenditure demand systems, @H
@� = 0;

for constant elasticity, @H@� > 0. For these cases, price�pressure and demand e¤ects work

(perhaps weakly) in the same direction and so @x(z;�)
@� > 0. The logit system (like classical

location models) is a boundary case with neither price�pressure nor demand e¤ects and so
@x(z;�)
@� = 0. For the linear demand speci�cation of Bowley, @H@� < 0 and

@x(z;�)
@� < 0:

Proof : Fix a symmetric pro�le of investment zi = z and consider an associated (interior)

symmetric Bertrand equilibrium p(z; �). The �rst-order condition for a symmetric interior

equilibrium is (p� c) @Di@pi
+Di = 0; or

� (p; �) � (p� c)h (p; �) +H (p; �) = 0:

If @�@p = (p� c)
@h
@p + h+

@H
@p < 0 it is immediate that

sign

�
@p(z; �)

@�

�
= sign

�
(p� c) @h

@�
+
@H

@�

�
= sign

�
�@�
@�

�
:

A symmetric (interior) equilibrium of the full investment�price game10 will satisfy the

�rst�order condition for investment: �xc0 (z)� 1 = 0 or

	(z; �) � �H (p(z; �); �) c0 (z)� 1 = 0:

A su¢ cient condition for @	=@z < 0 is

B �
�
(p� c) @h

@p
+ h+

@H

@p

�
c00H +

�
c0
�2
h
@H

@p
< 0:

Note that B < 0 implies that @�@p < 0.

9When B < 0 we have that sign dz�

dn
= sign

n
@H
@p
(p� c) @h

@n
� @H

@n

�
(p� c) @h

@p
+ h

�o
and sign dp�

dn
=

sign
n�
(p� c) @h

@n
+ @H

@n

�
c00H + (c0)

2
h @H
@n

o
. A su¢ cient condition for dz�

dn
< 0 is that @h

@n
> 0 and @h

@p
< 0.

10 If �i = (pi � c (zi))Di (p)� zi is strictly concave in (pi; zi), then some mild boundary conditions ensure

the existence of an interior equilibrium.
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We are now ready to assess the impact of the parameter � on the equilibrium z. From

dz
d� = �

@	=@�
@	=@z we have that

sign

�
dz

d�

�
= sign

�
@	

@�

�
= sign

�
�c0@x (z; �)

@�

�
;

where x (z; �) � H (p(z; �); �) is the equilibrium output per �rm in the Bertrand equilibrium

for a given z and the result in (i) follows. Note that, indeed, we have that innovation e¤ort

and individual output move in the same direction: sign
n
dx
d�

o
= sign

n
@x(z;�)
@�

o
because

dx
d� =

@x(z;�)
@z

dz
d� +

@x(z;�)
@� and sign

n
@x(z;�)
@z

o
= sign f�c0hg > 0.

The results in (ii) and (iii) follow from Table 1 and the characterization of the examples

in the Appendix. �

Remarks

� The parameter � could also be interpreted as �regulatory pressure�. It is then akin

to our product substitutability measure with @�
@� > 0 and

@H
@� = 0. Increasing � would

exert price pressure, increasing per �rm output and cost reduction expenditure. The

same e¤ect would be obtained with a binding price cap (or with an increase in a sales

tax paid by the �rms when the price is regulated).11

� We can extend the characterization in Proposition 1(i) removing regularity conditions

using lattice-theoretic methods as long as we restrict attention to extremal equilibria

(I do so explicitly for the Cournot case in Proposition 7 in the Appendix).

Table 1 provides the properties of the examples claimed in Proposition 1, as well as

computed equilibrium solutions for c (z) = �z�
 with � > 0 and 
 > 0 and for the demand

systems of constant elasticity, constant expenditure (constant elasticity speci�cation), and

logit. (The Appendix provides details for each example.) The parameter � can be related

to the underlying scienti�c base in the industry. For those computed examples we �nd also

that R&D intensity (R&D cost reduction expenditure over sales) z�

p�x� is increasing in n and

11With unregulated prices it is easy to see that an increase in a proportional sales tax paid by the �rms

would increase prices and reduce output and innovation e¤ort.
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�. For the constant expenditure-constant elasticity and logit we have also that nz� increases

with n and � (no e¤ect for the logit). All this holds true also for the constant expenditure

(constant elasticity speci�cation) demand case with c (z) = 1= (A+ z) with A > 0 in Table

2. It is worth noting therefore that despite the fact that z� is decreasing with n a usual

measure of the �rm�s R&D intensity, as well as total R&D intensity, is in fact increasing in

n in the examples.

2.1.1 Strategic commitment e¤ects

It may be asked if the results are robust with respect to strategic e¤ects. Toward this

end I analyze the subgame-perfect equilibria (SPE) of the two-stage game in which �rms

�rst invest in cost�reducing R&D � the investments are observable� and then compete in

prices. Denote by p� (zi; z�i) ; i = 1; :::; n, a second�stage Bertrand equilibrium for a given

investment pro�le z; and let

(p�i (zi; z�i)� c (zi))Di (p� (zi; z�i))� zi

be the corresponding pro�t of �rm i in the reduced�form game at the �rst stage.

It is not di¢ cult to see that, at a symmetric interior SPE of the two-stage game

(z; p� (z)); we haveH(p)+(p� c (z))h(p) = 0 and�c0 (z)H�1+(p� c (z)) (n� 1) @Di@pj

@p�j
@zi

=

0. The term

(p� c (z)) (n� 1) @Di
@pj

@p�j
@zi

is the strategic commitment e¤ect and it does not appear in the characterization of the equi-

librium in the simultaneous move game. With strategic complementarity in prices and the

condition @H
@p +h+(p� c)

@h
@p < 0, it follows that

@p�j
@zi

� 0 and therefore (p� c) (n� 1) @Di@pj

@p�j
@zi

�

0 because goods are gross substitutes @Di
@pj

� 0. Increasing the innovation e¤ort of �rm i

reduces the equilibrium prices of rivals, because �rm i is more aggressive and best responses

are upward sloping. In order to perform comparative statics with respect to n note that

the SPE z will be characterized by

�(z;n) � �c0 (z)x(z;n)� 1 + (p�(z; n)� c(z)) (n� 1) @Di
@pj

@p�j
@zi

= 0
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with x(z;n) � H (p�(z; n);n) and, provided @�
@z < 0, we have that sign

�
dz
dn

	
= sign

�
@�
@n

	
.

It is worth noting that the strategic commitment e¤ect makes �rms invest less �because it

softens price competition.

In order to �nd the sign of @�=@n we know already that sign
�
@
@n (�c

0 (z)H � 1)
	
=

sign
n
�c0 @x(z;n)@n

o
= sign

n
@x(z;n)
@n

o
. This con�rms the result in the simultaneous�move

game, with dz=dn < 0 when @x(z;n)=@n < 0. However, the derivative of the strategic com-

mitment e¤ect with respect to n has an ambiguous sign. The reason is that increasing the

number of �rms may induce the �rms in the �rst stage to distort their investment more (be-

cause there will be more competition at the second stage) or to distort it less (because, with

more �rms, the possibilities of manipulating the second�stage price equilibrium diminish).

Nonetheless, tedious algebra shows that, in the case of constant expenditure demand

system (with constant elasticity speci�cation for demand and constant elasticity innovation

costs) as well as in the Shapley�Shubik linear demand system and the logit case (both for a

general innovation cost function) the result of the simultaneous game holds and dz=dn < 0.

In all these examples investments at the �rst stage are strategic substitutes. Furthermore,

in these examples the same comparative statics with respect to � hold: dz=d� > 0 for the

�rst and second cases and dz=d� = 0 for the logit. Using the Bowley linear demand system,

Qiu (1997) �nds that sign
�
dz
d�

	
= sign

�
@x
@�

	
< 0 in the strategic two-stage game. This is

the same result as in the simultaneous game according to Proposition 1.

2.1.2 Bertrand and Cournot

We can think of still another way to change competitive pressure in the market: by switching

from Bertrand to Cournot. It is well known that Bertrand equilibria tend to be more

competitive than Cournot equilibria (see Vives (1985), Singh and Vives (1984), and Vives

(1999, Chap. 6) for a precise statement of the needed conditions). Typically we would then

have, at symmetric equilibria and for the same level of costs, that the Bertrand output will

be larger than the Cournot output and hence the incentive for cost reduction is greater in

the former. However, this conclusion need not be robust to strategic commitment e¤ects.

Indeed, in Cournot (with strategic substitutes competition) it pays a �rm to overinvest

in order to gain an advantage, whereas in Bertrand (with strategic complements) it pays
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to underinvest in order to gain an advantage (Fudenberg and Tirole (1984)). This means

that Cournot competition may induce more cost�reduction e¤ort owing to this strategic

e¤ect even though the output in Bertrand may be higher (see the linear-quadratic models of

Bester and Petrakis (1993), Qiu (1997), and Symeonidis (2003); in the latter, R&D increases

product quality in a quality-augmented version of the Bowley demand system). However, it

should be noted that, in general, if we want to know how an increase of competitive pressure

in a particular industry a¤ects innovation e¤ort, then a comparison between Bertrand and

Cournot equilibria will not be appropriate. Indeed, institutional features of the market

typically determine the mode of competition.12

2.2 Free entry

In this section I analyze markets with free entry and perform a comparative statics analysis

with the size of the market, the size of the entry cost F � 0, and the degree of product

substitutability. Firms choose whether to enter or not at a �rst stage and then choose

simultaneously investment and price.13

For any given n consider a regular (i.e. with B < 0) symmetric equilibrium at the second

stage with associated pro�ts per �rm of �n. At a free-entry equilibrium with ne �rms in

the market, each �rm makes nonnegative pro�ts, �ne � F , and further entry would result

in negative pro�ts, �ne+1 < F (I assume that �rms when indi¤erent enter). If �n is strictly

decreasing in n then there can be at most one free-entry equilibrium, and there will be one

if �n tends to zero as n grows.

A su¢ cient condition for pro�ts at a symmetric equilibrium, �n, to be strictly decreasing

in n is that bB � �(p� c) @h
@p
+ h+

@H

@p

�
c00H +

�
c0
�2
h2 � 0

12See Vives (1999, Chap.7).
13Alternative game forms involve �rms choosing simultaneously whether to enter, their investment in

cost reduction, and level of output (Dasgupta and Stiglitz (1980)); or entry and investment at a �rst

stage followed by market competition (Boone (2000)); or a sequential three-stage entry�investment�market

competition (Sutton (1991), Suzumura (1995)). See Mas-Colell, Whinston, and Green (1995, Sec.12E) for

a careful discussion of the di¤erences in the game forms when there is no investment in cost reduction.

Novshek (1980) and Kihlstrom (1999) consider simultaneous entry and output or price decisions.
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This is an strengthening of condition B �
�
(p� c) @h@p + h+

@H
@p

�
c00H + (c0)2 h@H@p < 0

(note that j@H=@pj < jhj). Assuming @H
@n < 0 and

@�
@n > 0, yields the result.

14

I will �nesse the game form positing a free-entry zero-pro�t condition. We will say

that the free-entry equilibrium is regular if d�n=dn < 0 for n = ne. If ne is such that

�n = F , then the free-entry number of �rms is [ne].15 Obviously, if we have a result, say,

that dn
e

dS > 0, this means that
d[ne]
dS � 0.

2.2.1 Comparative statics with market size and entry cost

Let the demand function be parameterized by the number of varieties n, yielding H (p) �

Di (p; :::; p;n).

Proposition 2 Consider a symmetric regular interior free�entry equilibrium (pe; ze; ne).

Under the assumptions of Proposition 1, suppose that @H@n < 0 and
@�
@n > 0; then

sign

�
dze

dS

�
= sign

�
dxe

dS

�
= sign

�
�dp

e

dS

�
> 0

and

sign

�
dne

dS

�
= sign

n
� bBo :

Furthermore,
dne

dF
< 0, sign

�
dze

dF

�
= sign

�
�dzn
dn

�
;

and

sign

�
dpe

dF

�
= sign

�
�dpn
dn

�
;

where (pn; zn) is the equilibrium with exogenous n evaluated at n = ne.

The symmetric regular interior free�entry equilibrium (pe; ze; ne) will ful�ll the FOCs

for price (p� c (z))h (p;n)+H (p;n) = 0 and cost reduction e¤ort �SH(p;n)c0 (z)�1 = 0,
14This follows because

d�n
dn

= (p� c)
�
@H

@n
+
dp

dn

�
@H

@p
� h

��
and d�n

dn
< 0 if and only if � @H

@n
bB+� @H

@p
� h

� �
(p� � c) @h

@n
+ @H

@n

�
c00H < 0 (since @H

@p
� h > 0, c00H > 0, and

sign
�
(p� c) @h

@n
+ @H

@n

	
= sign

�
� @�
@n

	
). Alternatively, with B < 0; a su¢ cient condition for d�n=dn < 0 is

that dp=dn < 0.

15The brackets [x] denote the largest integer less than x.
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as well as the zero pro�t condition (p � c(z))SH(p;n) � z � F = 0. The results follow by

di¤erentiating totally the equilibrium conditions under the assumptions (see the Appendix).

Increasing the size of the market reduces cost (process innovation) and may increase or

decrease the number of varieties (product introduction). The �rst results follows from an

output expansion e¤ect in a larger market. Increasing market size increases the number

of �rms less than proportionately, if at all, and thus increases individual �rm output and

innovation e¤ort. The potential downward pressure exerted on cost reduction e¤ort by

an increase in the number of �rms is overwhelmed by the expanded market. However,

increasing market size may decrease the number of �rms and varieties. The reason is that

increasing the market size may increase R&D rivalry so much, increasing per �rm R&D

expenditure, as to leave less room for entrants. That is, pro�ts are pushed down for a given

number of �rms because the direct pro�tability�enhancing e¤ect of market expansion is

overwhelmed by the indirect e¤ect of increased rivalry in R&D and prices. Obviously, when

ne increases with S, industry cost reduction expenditure neze increases with S. This is

the case in the constant elasticity (provided � � (1+ 
)�1), constant expenditure�constant

elasticity and logit examples.

Increasing the entry cost reduces the number of �rms and products introduced (indeed,

under our assumptions pro�ts are decreasing in n), and it a¤ects price and cost reduction

expenditure per �rm depending on the impact of a decreased number of �rms. Typically

(see examples in Table 1) we have that decreasing n increases z and p, and increasing F will

therefore decrease n and increase p and z. Increasing the entry cost then has the (perhaps

paradoxical) e¤ect of increasing cost reduction expenditure per �rm. The reason is that it

decreases the number of entrants, and each entrant produces more and has more incentive

to reduce costs. Decreasing entry barriers (F ) will always increase the number of �rms and

varieties but it will also decrease individual cost reduction e¤orts. It still can be true that

the industry cost reduction expenditure neze increases as F decreases. This is the case in

the constant elasticity (provided � � (1 + 
)�1), constant expenditure�constant elasticity

and logit examples in Table 2 (as well as in the constant expenditure�constant elasticity

demand case with innovation function c(z) = 1=(A+ z)).
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All the demand systems considered (linear, constant elasticity, constant expenditure,

and logit demand systems) ful�ll @H@n < 0 and @�
@n > 0 (see Table 1). Table 2 provides

the endogenous market structure counterpart of Table 1 with computed examples. The

Appendix provides computational details of the results reported in Table 2. In all the

cases considered in Table 2 when c (z) = �z�
 with � > 0 and 
 > 0 we have that

sign
�
dne

dS

	
= sign

n
� bBo � 0 (with strict inequality for constant expenditure-CES, logit

and CES with F > 0, and equality for CES, constant expenditure-CES with F = 0). In all

those cases a larger market implies more variety.16

16 In the CES case when F = 0 and � � 1

+1

; then pro�ts are strictly positive for all n and ne =1. (See

Appendix.)
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The result that sign
�
dne

dS

	
= sign

n
� bBoand the su¢ cient condition to obtain a unique

free�entry equilibrium (pro�ts decreasing in n), bB � 0, may suggest perhaps that we will

�nd more often that increasing market size increases product variety than the opposite

result. The reason is that we need the indirect increased rivalry e¤ect to dominate the

direct pro�tability�enhancing e¤ect of market expansion to overturn the result. The direct

e¤ect dominates in the collected examples above but by no means a universal result. An

example is provided by the constant expenditure-CES demand system with the innovation

function c(z) = 1=(A + z) and F < A. We have that sign
�
dne

dS

	
= sign fF �Ag and for

F < A there is less variety in a larger market.17 This type of situation is not empirically

irrelevant, as documented by the work of Sutton (1991) where industries with a large market

may be concentrated. Obviously, for F � A > 0 we have that dnezedS > 0 since dne

dS > 0 and

dze

dS > 0:

We see therefore that innovation e¤ort and concentration have an ambiguous relation-

ship. Increases in market size will increase z but may increase or decrease ne.

2.2.2 Comparative statics with product substitutability

Let the demand function be parameterized by �, yielding H (p) � Di (p; :::; p; �) with � = n

or � = �.

Proposition 3 Consider a symmetric regular interior free�entry equilibrium (pe; ze; ne).

Under the assumptions of Proposition 1, suppose that @H
@n < 0; @�

@n > 0; @H
@� � 0, and

@�
@� > 0, then at the equilibrium

sign

�
dze

d�

�
= sign

�
dxe

d�

�
= sign

�
�dp

e

d�

�
> 0

and sign
�
dne

d�

	
is ambiguous but

dne

d�
< 0 if

@H

@�
= 0 or if bB > 0.

The proof of the proposition follows along similar lines than that of Proposition 2 and

can be found in the Appendix.

17For a free-entry equilibrium to exist when F < A we need that 2ne�1
(ne�1) < � and this implies necessarily

that bB > 0.
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The assumptions on demands are ful�lled for all the examples (except the Bowley vari-

ation of linear demands). When @H
@� = 0 �as in the linear (Shapley�Shubik), constant

expenditure, and logit demand systems�we have that dne

d� < 0. It should be clear why

this is so. When changes in � are demand�neutral, increasing � decreases pro�ts and the

zero�pro�t entry condition is restored by decreasing the number of entrants.18 Increasing

the degree of product substitutability increases output and cost reduction expenditure per

�rm, provided the average demand for varieties (in terms of the demand for simultaneous

price movements H (�)) does not shrink. The reason is that if @H@� = 0 increasing � has no

e¤ect on demand but increases price pressure and decreases the number of entrants enticing

a higher output and innovation e¤ort per �rm; if @H@� > 0 then increasing � has the direct

e¤ect of expanding the market overcoming any possible adverse indirect e¤ect on individual

output and innovation e¤ort if the number of entrants where to increase. It is worth noting

that even if dn
e

d� < 0 it still can be true that the industry cost reduction expenditure neze

increases as � increases. This is the case in the constant expenditure�CES and logit exam-

ples with constant elasticity innovation function. In the constant expenditure�CES demand

case with innovation function c(z) = 1=(A+ z) we have that sign
�
dneze

d�

	
= sign fF �Ag.

The parameter � could also be interpreted as �regulatory pressure�, with @�
@� > 0 and

@H
@� = 0. An increase in regulatory pressure would then decrease price while increasing

cost reduction expenditure per �rm and concentration. Again, this would be the e¤ect of a

binding price cap or the increase in a sales tax with regulated prices.

2.2.3 Market power, concentration, product substitutability, and innovation

In a free�entry equilibrium we have from Bertrand pricing (where here � may represent S

or �) that
p� c
p

=
1

� (p; n; �)
;

18 In the constant elasticity (CES) case we have that ne is strictly decreasing in � when F = 0 (and

� > (1 + 
)�1 > ��) even tough @H=@� > 0. (See Appendix.)
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and combining the free entry condition (p � c(z))SH(p;n) � z � F = 0 with the FOC for

cost reduction expenditure �SH(p;n)c0 (z)� 1 = 0 we obtain

p� c (z)
p

=
1 + F

z

1 + F
z +

1

(z)

;

where 
 (z) � �zc0 (z) =c (z). Therefore

L � p� c (z)
p

=
1 + F

z

1 + F
z +

1

(z)

=
1

� (p; n; �)
:

From these expressions and our examples we can derive a series of observations, some

of which run counter common intuition and even practice in empirical model�building.

� The relationship between market power (Lerner index) and cost reduction expenditure

per �rm is ambiguous:

sign

�
@L

@z

�
= sign

�
�F
z2

�1 +

�
1 +

F

z

�

0


2

�
:

If 
0 � 0 and F > 0; then L is strictly decreasing in z. If F = 0 then sign
�
@L
@z

	
=

sign f
0g and thus, if 
0 > 0, L is strictly increasing in z. It follows that, if � or S

increase (and hence z also increases) then L decreases when 
0 � 0 and F > 0 or if


0 < 0 and F = 0. This is the case in particular if 
 is constant with F > 0. The

ambiguity in the relationship between a classical measure of market power like the

Lerner index and innovation e¤ort relates to the Schumpeterian theme making clear

that the belief that market power and innovation e¤ort move together is naive.

� However, total R&D intensity (including the cost F of introducing a variety) and

market power move together : L = (z + F )=px. In some circumstances F can be

interpreted as expenditure on product introduction and then L = (z + F )=px can be

interpreted as total R&D intensity. If 
 is increasing in z and F = 0, then increasing

S increases z, L; and R&D intensity. If F = 0 and 
 is constant, the degree of

monopoly power L is determined by technological considerations (the elasticity of the

innovation function) and R&D intensity is independent of market size S or product

substitutability �. This latter case would be consistent with the empirical evidence
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that indicates that R&D intensity is independent of �rm size.19 In the CES and

constant expenditure-CES examples L decreases with S while in the logit case it

increases with S. In the constant expenditure�CES case with the innovation function

c(z) = 1=(A+ z) we have that sign
�
dL
dS

	
= sign fA� Fg.

� The relationship between market power (Lerner index) and product substitutability is

ambiguous. Increases in product substitutability � need not go together with decreases

in the Lerner index L. This is so because increasing � may bring an increase in

concentration which more than compensates for the direct e¤ect of the augmented

substitutability. In particular, it could be that an increase in � increases market power

(L) and innovation e¤ort z. This will happen, for example, with 
0 > 0 20 and F = 0,

or F small as in the constant expenditure�constant elasticity case with the innovation

function c(z) = 1=(A+z) when A > F (then sign
�
dL
d�

	
= sign fA� Fg > 0). In this

latter case increasing � (� 1 + r) decreases ne so much that L diminishes despite the

direct impact of the increase in �. This situation would be at odds with work (e.g.

Aghion et al. (2002)) in which the Lerner index, or an approximation to it, is taken

as a proxy for competitive pressure measured by �. However, we see from Table 2

that the Lerner index is decreasing in � in the constant expenditure-CES21 and logit

cases (� � 1=�)) with innovation function c(z) = �z�
 . Then the direct e¤ect of the

increase in � overwhelms the indirect e¤ect via the decrease in ne.

� The Lerner index and the level of concentration may move in opposite directions. If

F > 0 and 
 is constant, then the Lerner index is strictly decreasing with �. It follows

that increasing � increases z, decreases L (and R&D intensity) and also decreases ne

if @H@� = 0. This does happen in the constant expenditure�constant elasticity case

or in the logit where sign
�
@ne

@�

	
= sign

�
@Le

@�

	
< 0 (see Table 2). The fact that

market power and concentration may not move together should not be surprising

once we taken into account that market structure is endogenous. Indeed, stronger

19The number of varieties introduced ne increases with S if � is increasing in p. This is so because � is

independent of S and strictly increasing in n, and also increasing S decreases p.
20Note that sign 
0 = sign

n
1 + 
 + c00z

c0

o
. Then � c0z

c
+ c00z

c0 < 0 if and only if c is log-convex.
21The fact that L is decreasing in � validates the conjecture of Aghion et al. (2002, p. 13, fn.9).
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competitive pressure (say via increased �) may yield decreased margins but increased

concentration as less �rms �nd pro�table to enter the market. The result that we

may have a high level of (market power and) R&D intensity and a high number of

varieties (low concentration) when substitutability (�) is low is parallel to the result

obtained by Sutton (1996) in a linear demand example with Cournot competition and

quality-enhancing investments.

� The relationship between concentration and cost reduction expenditure per �rm is am-

biguous. As stated before increasing market size always raises cost reduction expen-

diture per �rm but may increase or decrease the number of varieties.

� Market power (Lerner index) increases with higher entry barriers. We see from Ta-

ble 2 that the Lerner index is increasing in F in the constant elasticity, constant

expenditure�constant elasticity and logit cases with constant elasticity innovation

function as well as in the constant expenditure�constant elasticity case with the in-

novation function c(z) = 1=(A+ z).

Incentives in the Salop (1979) model (Raith (2003)) The incentive model by Raith

(2003) provides a nice illustration of our results. The author considers the model of Salop

(1979) with a mass of consumer S uniformly distributed on a circle of circumference 1 and

with quadratic transportation costs having parameter t. Each of the n �rms has a cost

ci = c� ei � ui;

where ei is the unobservable e¤ort exerted by the manager of the �rm and ui is normally

distributed idiosyncratic noise with mean 0 and variance v. Owner i o¤ers a linear contract

to his manager, with compensation wi = si+ bi (c� ci), to reduce costs. After all managers

have chosen their e¤ort levels, costs are realized (and are private information to the �rms),

�rms compete in prices, and a (Bayesian) Bertrand equilibrium obtains. Managers have

constant absolute risk aversion �, quadratic cost of e¤ort k2 (ei)
2 ; and a reservation utility

of 0. Given that the manager of i will choose ei = bi=k, �rm i will set si = � 1
2k (1�k�v)(bi)

2

so that the manager will obtain a zero expected utility. The expected compensation of the

manager will be wi = si+biei =
1+k�v
2k (bi)

2; the expected cost, ci = c�bi=k = c�
q

2wi
k(1+k�v) .
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In terms of our model, then,

c(z) = c�
s

2z

k(1 + k�v)
:

Under some parameter restrictions, and for a �xed number of �rms n, Raith shows

that there is a symmetric equilibrium for the overall game and that cost reduction e¤ort

is independent of � � 1=t. Furthermore, with free entry and with �rms paying an entry

cost F , cost reduction e¤ort is increasing in �, S; and F . All these results follow from

Propositions 1, 2, and 3 � noting that in the Salop model @H@p =
@H
@� = 0.

In this section we have obtained robust results of the impact on process innovation

and product introduction of several standard indicators of increased competitive pressure

in a world of price competition with product di¤erentiation. In short, we have found that

with restricted entry increasing the number of �rms lowers incentives for process innovation

while increasing product substitutability raises them; with free entry, increasing market

size and/or product substitutability increases process innovation incentives and has an am-

biguous impact on product introduction. Raising entry barriers decreases new product

introduction but raises cost reduction e¤ort per �rm.

3 Summary and links to empirical analysis

The results and testable empirical implications of our analysis may be summarized as fol-

lows. (See Table 3.)

Table 3

Restricted entry Free entry

Indicator n � S � 1=F

Process

Innovation
�

+

(with no market contraction)
+

+

(with no market contraction)
�

Product

introduction
�

�

(with no market expansion)
+

� In markets with restricted entry : More competitive pressure in terms of a larger num-

ber of �rms means less cost reduction expenditure per �rm, whereas more competitive
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pressure in terms of a greater product substitutability (that does not shrink the av-

erage demand for varieties) means more cost reduction expenditure per �rm.

� With free entry : Increasing the market size or product substitutability (with no shrink-

ing of the average demand for varieties) increases cost reduction expenditure and

output per �rm. Increasing the market size may increase or decrease the number of

varieties introduced (product introduction) although the former is more likely than

the latter. Increasing product substitutability will decrease entry and product variety

if the average demand for varieties does not expand. Lowering entry costs will increase

the number of entrants and lower cost reduction expenditure per �rm.

In applied work we may be interested in the behavior of aggregate indicators of inno-

vation such as industry cost reduction expenditure nz, research intensity z=px, or total

research intensity (z + F )=px (which coincides with the Lerner index). We have provided

results for the aggregate indicators for the examples we have dealt with (and some more

will be provided in the next section when dealing with the Cournot model). The summary

is that we obtain robustly that with restricted entry increasing product substitutability

increases both nz and z=px, and with free entry lowering the entry cost increases nz, z=px,

and (z + F )=px. The other comparative static results are potentially ambiguous, although

more often in the cases examined more competitive pressure (be it increasing n in the case

of restricted entry or increasing S, � or 1=F in the case of free entry) tends to yield an

increase in both nz and z=px.

The empirical literature in many instances has not taken into account properly the

endogeneity of both innovation e¤ort and market structure or market power measures.

A �rst consequence has been that in many studies only a weak relationship has emerged

between market structure and innovation, with factors such as technological opportunity in

the industry looming larger (see, e.g. the surveys in Scherer and Ross (1990) and Cohen

(1995)). Several attempts have been made taking other measures of competitive pressure

(like import penetration, Scherer and Huh (1992) and Bertschek (1995)) or using instru-

mental variables (e.g. Levin and Reiss (1988)).
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A second, and obvious, consequence is that it is not easy to disentangle the empirical

results obtained and compare them with the theoretical predictions. However, in so far as

this can be done the outcome of a cursory review of the literature is that a story consistent

with the model presented in this paper can be told and several studies point in the direction

of our theoretical �ndings.

I look in turn to evidence on competitive pressure and innovation, agency models, and

conclude with implications for empirical analysis.

3.1 Evidence on competitive pressure and innovation

Output expansion e¤ect of competition The key role of the output expansion e¤ect

of competition and the inducement to innovate is found in several papers. Cohen and

Klepper (1996a, b) provide compelling evidence of the positive relationship between R&D

expenditure and �rm size at the business unit level, that is output. Bertrand and Kramarz

(2002) and Ebell and Haefke (2002) provide evidence on the output expansion e¤ect of

competition.

The role of market size The empirical literature tends to con�rm the role of market

size in explaining the incentives to innovate (see Scherer and Ross (1990) and Cohen (1995)

for surveys as well as Symeonidis (2002a, chap. 6)).22 Acemoglu and Linn (2004) �nd a

large e¤ect of an increase in market size on the entry (quality improvement) of nongeneric

drugs and new molecular entities in the pharmaceutical industry. The authors present also

a theoretical model with a constant elasticity speci�cation. Kremer (2002) also builds on

the idea that market size drives pharmaceutical research.

The results with free entry suggest also that market integration and opening of markets

may yield unambiguous bene�ts in terms of innovation e¤ort or R&D expenditure. Indeed,

an increase in market size can result from international market integration or the dismantling

of barriers to trade. We would thus have a connection between globalization, understood

as the general lowering of transport costs and barriers to trade (see e.g. Krugman (1995)),

22Blundell, Gri¢ th, and Van Reenen (1999) provide evidence on the positive impact within industries of

market share on innovation output for a panel of British manufacturing �rms. The authors �nd also that

more concentrated industries have less aggregate innovation.
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and innovation e¤ort. Our results in particular are consistent with the �ndings in Baily

and Gersbach (1995) that competition in the global marketplace is what gives companies a

productivity advantage.

Concentration Geroski (1990) looks at what explains the innovations used by UK in-

dustries in the 1970s. Introducing appropriate controls (e.g. an index of technological

opportunity) he �nds a signi�cant negative in�uence of the �ve-�rm concentration ratio

(and its increase) on innovation use. Nickell (1996) �nds that a lower concentration is

associated to a higher growth in total factor productivity.

In both cases if innovation use or the productivity increase are associated with higher

e¤ort per �rm this would not be consistent with a restricted entry situation but could

be consistent with a free entry context when increasing market size S increases research

expenditure ze and the number of �rms ne (lowering concentration).

Product substitutability Syverson (2004a) �nds in the ready-mixed concrete industry

that higher (spatial) substitutability, created by transport costs, increases average pro-

ductivity. The same author provides evidence that industries�median productivity levels

are increasing in the degree of product substitutability of the industry products (Syverson

(2004b)). In both cases, however, the productivity increase is driven by the fact that less

e¢ cient �rms are driven out of the market with stronger competitive pressure.

About the inverted U-shaped relationship The (theoretical) result that in markets

with restricted entry, the R&D expenditure per �rm decreases in the number of �rms

should be contrasted with some results in the empirical literature where an inverted U-

shaped relationship between market concentration and R&D e¤ort or output is found (see

e.g. Scherer and Ross (1990), Caves and Barton (1990), and Aghion et al. (2002, 2005)).23

For highly concentrated markets, a decrease in concentration seems to bene�t innovation,

although the e¤ect is reversed for lower concentration levels. Aghion et al. (2002, 2005)

relate a measure of innovative output (the count of successful patent applications) to a

23See also Ceccagnoli (2005) for a nonmonotonic e¤ect in an increase in the number of non-innovating

�rms.

31



measure of competition (the Lerner index24) as a proxy for competitive pressure given by

� in a market with a �xed number of �rms (2002) and to a collusion measure (2005).

In their step-by-step innovation model there are two forces: competition may increase the

incremental pro�t from innovating (via an escape�the�competition e¤ect for �rms that have

similar cost levels -i.e. that are neck-to-neck) but also may reduce innovation incentives for

laggards when it is intense enough (by reducing rents to innovation). When competition is

low the �rst force dominates, yet when competition is intense the second does owing to a

composition e¤ect in the steady-state distribution of technology gaps.

These empirical results can be reconciled with the analysis in this paper under restricted

entry conditions provided that competition involves also a liquidation e¤ect that induces

cost�reduction e¤ort.25 Galdón-Sánchez and Schmitz (2002) provide evidence of the im-

pact of an increased probability of closure of iron�ore mines on productivity gains. The

escape�the�competition e¤ect is akin to our elasticity e¤ect when we measure the intensity

of competition by the number of �rms. In our general speci�cation the elasticity e¤ect is

dominated by the direct demand e¤ect, which is akin to the reducing rents e¤ect. However,

the �rst e¤ect is made more dramatic whenever low pro�ts may imply exit and bankruptcy

costs (termination costs for the manager or owner of the �rm). By reducing pro�ts, compe-

tition may put in danger the survival or the company and/or its management and so induce

more e¤ort whenever there are liquidation costs (see e.g. Schmidt (1997)). This means, for

example, that increasing the number of �rms increases the probability of liquidation and

thus tends to increase cost reduction e¤ort. This e¤ect is then dominated by the reduction

in pro�t (or demand) e¤ect when the number of �rms grows large.

3.2 Agency models

Recent empirical work relates competition to e¤ort exerted by managers and �rm perfor-

mance. Hubbard and Palia (1995) and Cuñat and Guadalupe (2002) provide evidence of

how competition increases the performance-pay sensitivity, respectively, of CEOs in the

24 In fact, they use average cost instead of marginal cost and hence their measure of competition (in terms

of our model) is instead bL � p�c�(z=x)
p

= L� z
px
.

25We might also try to explain an inverted U-shaped relationship between an average Lerner index and

average innovation output (or e¤ort) in an industry with asymmetric �rms and composition e¤ects.
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U.S. banking industry after deregulation and of CEO, executives, and workers in a panel of

U.K. �rms after the pound�s appreciation in 1996. Sharper incentives will be associated to

more e¤ort.

Bloom and Van Reenen (2006), using a survey of management practice data on medium-

sized �rms from the US, France, Germany and the UK, �nd that competition measured by

one minus the Lerner index, import penetration, and the number of competitors (as self-

reported by respondents to the survey) are strong determinants of managerial e¤ort and

managerial performance (and managerial performance is in turn linked to productivity).

Their results would be inconsistent with ours if entry is restricted since then an increase in

the number of competitors should reduce managerial e¤ort instead. However, with free entry

the number of �rms is endogenous and the Lerner index depends on product substitutability

and the number of �rms on top of the price. The positive association between n, 1�L and

innovation e¤ort z can be explained then because the entry cost F and market size S have

been omitted from the regression. For example, we have seen how higher entry costs are

associated to higher L, lower n and lower z. Similarly, we could have a higher S associated

to a higher n and a lower L (this is the case of the logit).

3.3 Implications for empirical analysis

The results are consistent with the available empirical evidence and help reconcile it with

the theory when we take account of the di¤erent measures of competitive pressure used by

di¤erent authors and whether process or product innovation is considered.

The approach should help to avoid pitfalls in empirical analysis by making clear what

results are robust and which ones are not. For example, it cannot be taken for granted

that a good proxy for the degree of product substitutability, as indicator of competitive

pressure, is the Lerner index. More importantly perhaps, empirical studies should consider

that apparent relationships between endogenous variables (like R&D expenditure per �rm,

the Lerner index and the number of competitors) may be explained by omitted variables

(such as technological opportunity, market size, product substitutability, or entry costs

as the case may be). In particular, the number of competitors can only be taken to be

exogenous in markets with restricted entry like regulated sectors. The Lerner index and
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the level of concentration are endogenous variables determined by the fundamentals and

therefore an observed relationship like �a lower Lerner index and/or lower concentration

induce more cost reduction�, once we control for entry costs and market size, may turn into

�larger markets and with lower barriers to entry induce a lower Lerner and concentration,

and more cost reduction�.

Empirical analysis should consider carefully whether innovation is process or product,

whether entry is restricted or not, and include as much as possible exogenous determinants

or instruments like market size, entry costs, or product substitutability variables as well as

controlling for technological opportunity.

A potential application of these results is to regulated markets. For example, in banking

both the deregulation process in Europe and the removal of restrictions on U.S. intrastate

and interstate branching have been claimed (by Gual and Neven (1993) and Jayaratne and

Strahan (1998), respectively) to deliver cost e¢ ciencies. Regulatory restructuring in the

electric power sector in the US caused costs at investor-owned plants to fall by more than

costs at municipally-owned plants, where owners mostly were not a¤ected by restructuring,

and costs at investor-owned plants in states that moved quickly to deregulate fell faster

than costs at plants in other states (Markiewicz et al. (2005)).26 More in general, Alesina

et al. (2005) show that in OECD countries deregulation has tended to increase investment.

This is consistent with our analysis as long as deregulation is interpretable as increases in

market size and/or product substitutability. If deregulation implies a reduction in entry

barriers then it will increase product variety but decrease cost reduction e¤ort by individual

�rms, although total investment may still increase. The e¤ects of price caps on innovation

are discussed in the pharmaceutical industry. A tighter price cap is akin to an increased

product substitutability with neutral demand e¤ects. The result then is more cost reduction

e¤ort but diminished product introduction.

26Olley and Pakes (1996) in the telecommunications industry and Ng and Seabright (2001) in airlines

provide further evidence of productive gains derived from deregulation.
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4 A robustness analysis: Cournot competition with homoge-

nous product

In this section I check the robustness of the results obtained to the case of Cournot markets

with homogenous products. I start with the case with restricted entry and perform a com-

parative statics exercise on the number of �rms. I check also for the strategic commitment

e¤ect of R&D investment. I consider then the case of free entry and study the comparative

statics properties with respect to the size of the market and entry cost.

Consider an n-�rm Cournot market for a homogenous product with smooth inverse

demand P (�), P 0 < 0. Parameterize the demand by the size of the market S > 0. Inverse

demand is then given by p = P (X=S). As before �rm i can invest zi to reduce its constant

marginal cost of production ci according to a smooth function ci = c (zi) with c (z) > 0,

c0 (z) < 0, and c00 (z) > 0 for all z > 0. A �rm to enter the market has to incur a �xed cost

F � 0. The pro�t to �rm i is given by

�i = P (X)xi � c (zi)xi � zi � F;

where xi is the output of the �rm and X is total output.

4.1 Restricted entry

Let S = 1 and consider a simultaneous�move game where �rm i, for each i of a given

number of �rms n, chooses (zi; xi). Consider an (interior) symmetric equilibrium (z; x) of

the game. We say that the equilibrium is regular if

D �
�
(n+ 1)P 0 + nP 00x

�
c00x+

�
c0
�2
< 0:

With Cournot competition the price�pressure and the demand e¤ects collapse into the

output e¤ect. It is to be expected again that the direct demand e¤ect dominates and that

output and cost reduction expenditure per �rm decrease with the number of �rms. This is

con�rmed in the following proposition for the usual Cournot case of strategic substitutes

competition (downward sloping best replies or P 0 + P 00x < 0).
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Proposition 4 Let P 0 < 0 and let c0 < 0, and c00 > 0. Consider a symmetric regular

interior equilibrium (z�; x�). Then

sign

�
dz�

dn

�
= sign

�
dx�

dn

�
= sign

�
P 0 (nx� ) + P 00 (nx�)x�

	
:

The proof is immediate by di¤erentiating the �rst order conditions for equilibrium, which

yields

dx�

dn
= �x

2 (P 0 + xP 00) c00

D
;

dz�

dn
=

xc0 (P 0 + xP 00)

D
;

and the result follows since by assumption D < 0, c0 < 0, and c00 > 0. As before from the

pro�t function we see that output and cost reduction expenditure per �rm have to move

together since a larger output provides a larger bene�t to reduce costs. How individual

output in a Cournot equilibrium x�n changes with the number of �rms is dictated by the

slope of best replies, which is determined by sign fP 0 (nx�n) + P 00 (nx�n)x�ng. The reason is

that increasing n increases (n� 1)x�n and in a Cournot equilibrium of a symmetric market

individual output equals the best response to the aggregate output of rivals. Therefore,

individual output x�n increases or decreases according to the slope of the best reply to the

aggregate output of rivals (n � 1)x�n.27 The normal case is that this slope is negative and

best responses are decreasing (strategic substitutes case). Indeed, the conditions for upward

sloping best replies (strategic complements) in Cournot oligopoly are quite stringent.

Letting the elasticity of the slope of inverse demand be

E � �XP 00(X)=P 0

we have upward sloping best responses (with constant marginal costs) if n + 1 > E > n.

The �rst inequality yields uniqueness (and stability) of the symmetric Cournot equilibrium

((n+ 1)P 0 + nP 00x < 0 is equivalent to n+ 1 > E); the second yields upward sloping best

responses (see Seade (1980) and Vives (1999, Sec. 4.3.1)). If E is constant (encompassing

the linear and constant elasticity cases)28 upward sloping best responses will hold, if at all,

27See p.106-107 in Vives (1999).
28Then demands are of the form P (X) = a� bX1�E if E 6= 1 or P (X) = a� b log X if E = 1, with a � 0

and b > 0 if E � 1 and b < 0 if E > 1, and they include linear (E = 0) and constant elasticity.
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for a single change in the number of �rms n. If E is constant and we require n+ 1 > E for

all n � 1, then 2 > E and only 2 > E > 1 is possible.29

Existence, uniqueness, and regularity conditions

� Su¢ cient conditions for D < 0 when c00 > 0 are that P 0 + xiP 00 < 0 and (2P 0 +

xP 00)c00xi + (c0)2 < 0. These conditions imply that �i = P (X)xi � cixi � zi is

strictly concave in (xi; zi). Strict concavity plus a mild boundary condition implies

the existence of an interior equilibrium.30

� If D < 0 at any candidate equilibrium then equilibrium is unique.

� Using lattice-theoretic methods is possible to extend Proposition 4 removing the reg-

ularity conditions, as long as we restrict attention to extremal equilibria. With down-

ward sloping demand and a decreasing innovation function plus some mild boundary

conditions interior extremal equilibria (x�; z�) exist and x� and z� are strictly decreas-

ing (increasing) in n if Cournot best replies are strictly decreasing (increasing). The

statement of the result and proof are in the Appendix (Proposition 7).

Examples The models of Dasgupta and Stiglitz (1980) and Tandon (1984) are particular

cases of Proposition 4.

Constant elasticity (Dasgupta and Stiglitz (1980)). Let P (X) = bX�" (a = 0; E � 1 =

" > 0) and let c(z) = �z�
 . The condition n+1 > E > n becomes in this case n > " > n�1.

Assume that "(1+
)=
 � n > " (this implies that D < 0); then there is a unique symmetric

equilibrium with

z� =
�
b (
=n)" �"�1 (1� "=n)

�1=("�
(1�"))
and

x� = (1=
�)
�
b (
=n)" �"�1 (1� "=n)

�(1+
)=("�
(1�"))
:

29See Amir (1996) and Vives (1999, Sec. 4.1)) for a discussion of why downward best replies are the

normal case in Cournot.
30Pro�ts �i are strictly concave in (xi; zi) if c00 > 0, 2P 0 + xiP

00
< 0, and (2P 0 + xP

00
)c00xi + (c

0)2 < 0. If

P 0 + xiP
00 < 0 then a su¢ cient condition to have that (2P 0 + xP 00)c00xi + (c0)2 < 0 is that c(�) is su¢ ciently

convex, that is, �c00x=c0 > c0=P 0 > 0.

37



If we require that n > " for all n � 1; then z� and x� increase with n only when going

from monopoly to duopoly. Total output nx� and industry R&D expenditure nz� both

increase with n. R&D intensity
z�

p�x�
= 


�
1� "

n

���
�

�"�1
increases with n and with 
. It

is immediate also that z� and pro�t �� increase (decrease) with � if " > 1 (" < 1) :

Linear demand (Tandon (1984)). Consider a market with linear demand p = a�bX and

c (z) = a��z�. We need � < 1
2 to guarantee strict concavity of pro�ts of �rm i with respect

to xi and zi (if � < 1 then c (�) is strictly convex). Then z� =
�

��2

b(n+1)

�1=(1�2�)
and x� =�

�
(n+1)b

��
��2

b(n+1)

��=(1�2�)
are both decreasing in n for � < 1

2 , while R&D intensity z
�=p�x�

may decrease or increase with n (it decreases for � 2
�
1
5 ;
1
2

�
). Industry R&D expenditure

nz� may increase or decrease with n.

4.1.1 Strategic commitment e¤ects

I analyze the subgame-perfect equilibria (SPE) of the two-stage game where �rms �rst

invest in cost reduction and then compete in quantities. Denote by x� (zi; z�i), i = 1; :::; n,

a second�stage Cournot equilibrium for a given investment pro�le and let

V (zi; z�i) � P (X� (z))x�i (z)� c (zi)x�i (z)� zi

be the associated pro�t for �rm i. The following proposition strengthens the requirements

on demand to ensure that investments in the �rst stage are strategic substitutes ( @2V
@zi@zj

< 0,

j 6= i) and that increasing n reduces both output and cost reduction expenditure per �rm.

When investments are strategic substitutes, increasing the number of �rms will tend, but

need not �see the example after the proposition, to decrease the cost reduction expenditure

of any �rm because the aggregate investment of rivals increases. The following proposition

states the result formally (with proof in the Appendix).

Proposition 5 Consider a symmetric interior SPE of the two-stage game: (z�; fx� (zi; z�i)gni=1).

Suppose that P 00 � 0 and that �P 0 is log�concave (i.e., P 0P 000 � (P 00)2 � 0). Then invest-

ments are strategic substitutes at the �rst stage, and we have dz�

dn < 0 and
dx�

dn < 0.

For the case of E constant we can provide an explicit expression for sign fdz�=dng. Let

E < 1 + n, n > 1, and let c (�) be su¢ ciently convex (�c00x=c0 > c0=((1 +min(n�E; 0))P 0)
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> 0), then31

sign

�
dz�

dn

�
= signfE � 2(n� E)2g:

Therefore, dz
�

dn < 0 for E � 0 (or P 00 � 0)32 and dz�

dn > 0 for 1 + n > E > n (strategic

complementarity at the output stage). Note however that we could have dz�

dn > 0 for E

close to n and 0 < E < n, i.e., with strategic substitutes at the output stage (as well as at

the investment stage). This is the case in the constant elasticity demand model considered

by Spence (1984). Then E = 1 + " and, with an exponential innovation function (as in

the following example), z� increases from n = 1 to n = 2 for " � 1=2; for larger n, z� is

decreasing with n. (For " < 1=2 and n = 1 or n = 2 , E�2 (n� E)2 > 0, whereas for n � 3

it is negative.)

An agency model with linear demand (Martin (1993)) Here every �rm has an

owner and a manager and the manager�s unobservable e¤ort reduces cost. The constant

marginal cost of �rm i is given by

c (�i) = m+ �ie
�li

for m > 0, �i a random variable (i.i.d. across �rms) with compact positive support
�
�; �
�
;

and li the labor input (e¤ort) of the �rm�s manager. The manager observes �i and knows

li but the owner does not. The latter sets up an incentive scheme with a cost target c (�i)

and a payment schedule ' (�i). The interpretation is that, given a reported e¢ ciency �i,

the manager must achieve the cost target c (�i) in order to obtain the compensation ' (�i).

The utility of the manager equals the compensation minus the disutility of e¤ort �li, where

� > 0. It is easy to check that an incentive-feasible compensation schedule must satisfy

' (�i) = � log
�

c(�i)�m . Market competition is à la Cournot with linear demand, and in the

�rst stage owners compete by setting cost targets. It is then immediate that the optimal

cost target and the compensation are constant. We are thus in the frame of our model with

31 It can be checked after some tedious computations (see Suzumura (1995)) that with these assumptions
dz�

dn
= � @'=@n

@'=@z
with @'=@z = �(1 + G(x; n))(c00x + (c0)2=(1 + n � E)P 0)) < 0 and @'=@n = xc0(z)(n �

1)(2(n� E)2 � E)=(1 + n� E)2n2.
32This actually follows from Proposition 2 because �P 0 is log-concave if E is constant and E � 0 (i.e.,

P 00 � 0).
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an innovation function (or reduced�form cost function)

c (z) = m+ � exp f�z=�g , � > 0:

Note that c0 < 0 and c00 > 0. Given that demand is linear (E = 0) we have that dzdn < 0

or that increasing the number of �rms reduces cost-reduction e¤ort and increases costs.

Indeed, this is the result obtained by Martin (1993).

4.2 Free entry

We look for a free-entry equilibrium in which entering �rms incur a �xed cost F � 0. Firms

choose whether to enter or not at a �rst stage and then choose simultaneously investment

and output.

For any given n consider a regular (i.e. with D < 0) symmetric equilibrium at the

second stage with associated pro�ts per �rm of �n. As before, we will say that the free�

entry equilibrium is regular if d�n=dn < 0 for n = ne.33

Proposition 6 Suppose that the assumptions of Proposition 4 hold and let (xe; ze; ne) be

a symmetric regular interior free-entry equilibrium. Then

sign

�
dze

dS

�
= sign

�
dxe

dS

�
> 0:

Furthermore,

sign

�
dze

dF

�
= sign

�
dxe

dF

�
= sign

�
�
�
P 0 + (x=S)P 00

�	
and

dne

dF
< 0:

At the equilibrium we will have a triple (x; z; n) ful�lling the FOCs for output and

innovation e¤ort as well as the zero pro�t condition (P (xn=S) � c(z))x � z � F = 0. The

results follow by di¤erentiating totally the equilibrium conditions under the assumptions

(see the Appendix).

33With D < 0 we have that

sign fd�n=dng = signf(2P 0 + xP 00)c00xi + (c0)2g;

and the second�order necessary condition yields (2P 0+xP 00)c00xi+(c0)2 � 0. Pro�ts are strictly decreasing

in n if �i = P (X)xi � cixi � zi is strictly concave in (xi; zi).
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Increasing S will have a positive direct impact on x and z and an indirect e¤ect because

of the changes in n. However, the indirect e¤ect is always dominated because n increases

(if at all) less than proportionately than S. The reason is that, with constant marginal

costs, increasing the market size increases also the toughness of competition and puts pres-

sure on margins, moderating the rate of entry.34 In fact, n may even decline as a result

of the intensity of the R&D competition. A condition for this not to be the case is strate-

gic substitutability in outputs (i.e., P 0 + (x=S)P 00 < 0) and c(�) su¢ ciently convex (i.e.,

�c00x=Sc0 > nc0=P 0 > 0). Then dne

dS > 0.

The comparative statics results on F are very intuitive. Increasing the entry cost de-

creases the free�entry number of �rms, and it increases (decreases) output and cost reduc-

tion expenditure per �rm whenever outputs are strategic substitutes (complements). In the

usual strategic substitutes case decreasing entry barriers induces more entry and each �rm

is smaller and has less incentive to invest.

Remarks

� As in the Bertrand model, it is easy to check that in equilibrium

L � p� c
p

=
1 + F

z

1 + 1

(z) +

F
z

=
"(nx)

n
;

where 
 (z) � �zc0 (z) =c (z) and " (X) � �XP 0 (X) =P (X).35 It is immediate also

that L = (z + F )=px.

� If 
 (�) is bounded below by 
> 0 and "(�) is bounded above by " then a free entry

equilibrium can not have more �rms than n � "
�
1 + 1




�
. This follows immediately

since, from the expression in the bullet point above, in equilibrium

ne = "(nexe)

 
1 +

1=
(ze)

1 + F
ze

!
< n = "

�
1 +

1




�
:

This is akin to the "�niteness" or "natural oligopolies" result of Gabszewicz and Thisse

(1979) and of Shaked and Sutton (1983) in the context of a Cournot homogenous product

34For example, if P (X=S) = (X=S)�1 then, letting n(S) denote the free-entry number of �rms for a given

symmetric investment pro�le z and Cournot competition, we have n(S)=S = (F=S)1=2.
35Note that sign "0 = sign f1� "� Eg :
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market. It is worth to remark that condition 2 in Sutton (1991, p.72) to obtain a lower

bound on market concentration is precisely that 
 (�) be bounded below by some 
> 0

(Sutton works with in fact with the inverse of 
 (�)). Condition 1 in Sutton (1991, p.72)

relates to a pro�tability condition of introducing a product of a certain quality. In our

context this condition is played by an upper bound on the inverse elasticity of demand.

� If F = 0 then L = z=px (R&D intensity) and

ne = "(nexe)

�
1 +

1


(ze)

�
:

If 
 is increasing in z; then increasing S increases z and R&D intensity. Note that, for

a given inverse elasticity ", increasing the technological opportunities 
 will tend to

increase concentration. This is consistent with the empirical �ndings that industries

with more technological opportunities are more concentrated (see, e.g. Scherer and

Ross (1990)).

� With constant elasticity innovation and demand functions and F > 0; we have that

L decreases (strictly) with z and hence increasing S increases z, decreases L; and

increases n. However, if F = 0; then L = 
=(1 + 
) and ne = "(1 + 
�1) are

independent of S:

Constant elasticity examples

� Let p = (X=S)�" (E � 1 = " > 0), c(z) = �z�
 and F = 0. Then, indeed, both

ze =
�
S"
2"�"�1"�" (1 + 
)�(1+")

�1=("�
(1�"))
and

xe =
1


�

�
S"
2"�"�1"�" (1 + 
)�(1+")

�(1+
)=("�
(1�"))
increase with S (Dasgupta and Stiglitz (1980)).

� Tandon (1984) considers a linear demand example p = a � bX with c (z) = a � �z�

and F = 0. Strict concavity of pro�ts of �rm i with respect to xi and zi requires

� < 1
2 . Then n

e = 1��
� . Both z

e =
�
�2�2

b

� 1
1�2�

and xe =
�
��
b

��
�2�2

b

� �
1�2�

, as well as

R&D intensity ze=pexe, increase in S (decrease in b) since � < 1
2 , and n

eze increases

in �.
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� Sutton (1991) considers a three-stage game featuring (i) an entry decision, (ii) in-

vestment in cost reduction, and (iii) quantity competition. Demand is given by

P (X=S) = (X=S)�1and the innovation curve by c(z) = (z
a�1 + 1)�1=
 , where


 > maxf1; 2a=3Fg and F is the sunk cost of entry. Then, for S small, ze = 0;

for larger S, ze is increasing in S while ne decreases (increases) in S if F < a=


(F > a=
). This model can also be given a quality investment or advertising inter-

pretation. In this example, investment has a strategic commitment e¤ect.

Product di¤erentiation The results could be easily extended to product di¤erentiation.

In fact, Spence (1984) has shown how a certain class of cost�reduction Cournot models

with homogenous product can be reinterpreted in a product di¤erentiation environment.

In the constant elasticity case, for example, it is possible to check that, under quantity

competition, the same comparative statics with respect to S hold as in the Bertrand case.

That is, dn
e

dS > 0 for F > 0 and
dne

dS = 0 for F = 0.
36

5 Extensions

5.1 An alternative measure of competitive pressure

Competitive pressure could be measured also by the extent that each �rm internalizes the

pro�ts of other �rms. This could arise, for example, when �rms in the industry have cross-

shareholdings or because of collusion. Suppose that �rm i maximizes

�i + ��j 6=i�j ;

where � ranges from � = 0 (no internalization as before) to � = 1 (full internalization or

collusion), and consider the simultaneous�move game. An increase in � will then mean a

decrease in competitive pressure. The parameter � was called by Edgeworth (1881) the

coe¢ cient of �e¤ective sympathy� and has been used in the literature (see Shubik and

Levitan (1980) and Symeonidis (2002)). It is possible to check (proofs available on request)

36 Inverse demand in the CES case is given by pi =
S1�������x��1i�P

j x
�
j

�1�� for i = 1; :::; n (Koenker and Perry

(1981)).
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that, under Cournot and under Bertrand competition, an increase in competitive pressure

1=� will:

� increase output and cost reduction expenditure per �rm with restricted entry; and

� increase cost reduction expenditure per �rm and decrease the number of entrants (and

varieties) with free entry.

The intuition is straightforward. With restricted entry, if �rms are more aggressive (a

lower �) then output per �rm and the incentive to innovate will increase. With free entry,

a �rm (when deciding whether to enter) considers only its own pro�ts but knows that, once

in the market, competition will be softer if � is higher. Tougher competition thus means

that fewer �rms will enter and that output per �rm will be larger, inducing a larger cost

reduction e¤ort. The results with � parallel those obtained in the Bertrand case with degree

of substitutability � whenever changes in � are demand�neutral (@H@� = 0).

5.2 Investment in quality

The cost�reduction model can be interpreted as investment in quality (in terms of product

enhancement) in the context of the Cournot model. The most straightforward case is when

investment increases the intercept of the inverse demand function (�(z)+P (X) with �0 > 0).

In the Cournot duopoly model of Vives (1990) a higher product substitutability increases

investment in product enhancement that expands the market. Spence (1984) or Sutton

(1991) present other cases where such extension is possible. Results by Sutton (1996) and

Symeonidis (2000) are in line with those obtained in this paper. Sutton (1996) considers a

linear demand example (a quality-augmented version of the Bowley demand system) with

Cournot competition and quality-enhancing investments and �nds, as in our model, that

it is possible to have a high level of R&D intensity and a high number of varieties (low

concentration) when substitutability (�) is low. Symeonidis (2000) considers a (strategic)

three-stage game of entry, investment in product quality, and quantity competition within

a model in which horizontal and vertical product di¤erentiation coexist. Demand func-

tions are linear as in Sutton (1996) and the innovation function is of the power variety.

44



The author �nds that increasing the degree of horizontal product substitutability increases

concentration and R&D e¤ort and that increasing the market size increases R&D e¤ort.37

The same straightforward reinterpretation does not hold with price competition. In this

case decreasing unit costs are not equivalent to an increase in the intercept of the demand

function. However, in the Bertrand duopoly model of Vives (1990) it can be shown that

a higher product substitutability increases investment in product enhancement that raises

the willingness to pay of consumers.

5.3 Spillovers

When the e¤ort of one �rm a¤ects (favorably) the cost reduction of other �rms, we say

that there are (positive) spillovers.38 With high enough (positive) spillovers, the R&D cost

reduction investments of rivals may be strategic complements in a two-stage game with in-

vestment at the �rst stage and Cournot competition in the second. This is what happens in

the linear-quadratic speci�cations of d�Aspremont and Jacquemin (1988, 1990) and Cecca-

gnoli (2005).39 In principle this suggests that, with high enough spillovers and with Cournot

competition, it could be that increasing the number of �rms increases individual �rm inno-

vation e¤ort. However, it can be checked that this does not happen in the linear-quadratic

speci�cation where increasing the number of �rms always lowers innovation e¤ort.40

6 Concluding remarks

Does competitive pressure foster innovation?

37 Interestingly, Berry and Waldfogel (2003) show that in the restaurant industry (where quality is produced

mostly with variable costs) the range of qualities increases with market size, whereas in daily newspapers

(where quality is produced mostly with �xed costs) the average quality increases with market size and there

is no fragmentation as the market grows large.
38See Spence (1984), d�Aspremont and Jacquemin (1988, 1990) and Amir (2000).
39Ceccagnoli (2005) also shows that with fringe �rms that do not invest in R&D and do not bene�t from

the spillover, strategic complementarity among the investing �rms increases with the number of fringe �rms.
40The setting is as follows: P (X) = a� bX and c (z) = c� zi � �

P
j 6=izj . If a �rm invests 
z2i =2, then

its marginal cost will be reduced by zi + �
P

j 6=i zj ; where 1 > � > 0 is the spillover rate. When � > 1=2

investments at the �rst stage are strategic complements.
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The answer to the question is a quali�ed �yes�because it depends on what measure of

competitive pressure we use and what type of innovation (process or product) we have in

mind.

In this paper I have obtained robust results on the relationship between indicators of

competitive pressure and innovation which do not depend on the speci�cation of functional

forms, and hold for both Bertrand and Cournot competition. This should be reassuring for

empirical analysis. Indeed, the competition mode is not easy to distinguish empirically. The

analysis has helped to uncover the key drivers of process and product innovation: market

size, degree of product substitutability, entry costs, and technological opportunity. The

main implication for empirical analysis is that care has to be taken with the use of proxies

of competitive pressure, such as the commonly used Lerner index, without controlling for the

underlying determinants. Our general analysis uncovers, for example, that the relationship

between the Lerner index and the degree of product substitutability is ambiguous.

I have not developed the normative implications of the paper. However, we can derive

from the analysis the e¤ect of competition policy, which can act upon the �sympathy coef-

�cient�� and entry cost F �as with deregulation. Indeed, penalties for collusion or market

power mitigation measures will tend to lower � and lowering of barriers to entry will lower

F . We have then that a tougher competition policy (inducing a lower �) will increase

innovation e¤ort but decrease entry (and new product introduction) with free entry.

Many extensions of the analysis could be envisioned. I have already commented on

alternative ways of parameterizing competitive pressure, investments to enhance quality,

and spillovers. An immediate extension would be to consider investment that a¤ects the

slope of (increasing) marginal costs. More substantial extensions would include asymmetric

market structures and performing a welfare analysis with a view toward competition and

industrial policy. Leahy and Neary (1997) have developed part of this program.
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7 Appendix:

7.1 Proofs

Proof of Proposition 2: Consider the symmetric regular interior free-entry equilibrium

(pe; ze; ne). The equilibrium will be characterized by

(p� c (z))h (p;n) +H (p;n) = 0

�SH(p;n)c0 (z)� 1 = 0

(p� c(z))SH(p;n)� z � F = 0

It can be checked that the Jacobian of the system is negative de�nite under the assump-

tions (B < 0 and @�n=@n < 0 for n = ne). Di¤erentiating totally the equilibrium conditions

with respect to S and evaluating at the equilibrium, we �nd that

sign

�
dpe

dS

�
= sign

�
H2Sc00 (p� c)

�
(p� c) @h

@n
+
@H

@n

��
< 0;

sign

�
dze

dS

�
= �H

�
(p� c) @h

@n
+
@H

@n

�
> 0;

and

sign

�
dne

dS

�
= sign

n
H2Sh�1 bBo = signn� bBo :

Di¤erentiating totally the equilibrium conditions with respect to F and evaluating at

the equilibrium, we �nd that

sign

�
dne

dF

�
= sign

�
c00H

�
h+

@H

@p
+ (p� c) @h

@p

�
+
�
c0
�2
h
@H

@p

�
= sign fBg < 0:

Furthermore,

sign

�
dpe

dF

�
= � sign

��
c0
�2
h
@H

@n
+Hc00

�
(p� c) @h

@n
+
@H

@n

��
= sign

�
�dpn
dn

�
and

sign
dze

dF
= �

�
sign

@H

@p

@h

@n
(p� c)� @H

@n

�
h+ (p� c) @h

@p

��
= sign

�
�dzn
dn

�
;

where (pn; zn) is the equilibrium with exogenous n evaluated at n = ne. �
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Proof of Proposition 3: Similarly as in the proof of Proposition 6, di¤erentiating

totally the equilibrium conditions and evaluating at the equilibrium yields

sign

�
dpe

d�

�
= sign

�
Hc00 (p� c) 


	
;

and

sign

�
dze

d�

�
= sign

�
Hc0


	
;

where


 =

�
@H

@�

�
(p� c) @h

@n
+
@H

@n

�
� @H
@n

�
(p� c) @h

@�
+
@H

@�

��
:

We obtain that dp
e

d� < 0 and
dze

d� > 0 because 
 < 0 (
@H
@� � 0, sign

�
�
�
(p� c) @h@n +

@H
@n

�	
=

sign
n
@�
@n

o
> 0, @H@n < 0, and sign

�
�
�
(p� c) @h@� +

@H
@�

�	
= sign

n
@�
@�

o
> 0); and sign

�
dne

d�

	
=

sign f�H�g, where

� � @H
@�

�
c00 (p� c)

�
h+ @H

@p + (p� c)
@h
@p

�
�
�
c0
�2
h
�

�
�
H + (p� c) @H@p

�
c00
�
(p� c) @h@� +

@H
@�

�
:

In general sign
�
dne

d�

�
is ambiguous. If

@H

@�
= 0 then sign

�
dne

d�

�
< 0 because�

H + (p� c) @H@p
�
c00
�
(p� c) @h@� +

@H
@�

�
< 0.

If bB > 0 then sign �dne
d�

�
< 0 because

� � @H

@�

bB
�h �

�
H + (p� c) @H

@p

�
c00
�
(p� c) @h

@�
+
@H

@�

�
:

�

Proposition 7 Let P 0 < 0 and c0 < 0, and let the following boundary conditions hold:

There exist c > c > 0 and X > 0 such that c > c (z) > c > 0; c0(0+) = �1; c0(z) ! 0 as

z !1, P (xn) � c if xn � X, and limx!0 fP (xn) + xP 0 (xn)g � c . Consider an extremal

symmetric interior equilibrium (x�; z�). Then x� and z� are strictly decreasing (increasing)

in n if Cournot best replies are strictly decreasing (increasing).

Proof: Given a symmetric investment pro�le z and given that P 0 < 0, there exist

extremal symmetric Cournot equilibria x (z) and x (z) that are increasing in z (Amir and
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Lambson (2000), Vives (1999, pp. 106�107)). This means that there exist extremal symmet-

ric equilibria in the game. Indeed, just consider x (z), where z is the smallest equilibrium

associated to x (�) and z is the greatest equilibrium associated to x (�) : At an extremal

interior equilibrium (x�; z�), we have P (xn) + xP
0
(xn) � c(z) = 0 and �xc0(z) � 1 = 0.

Therefore, � (z; n) � �x(z; n)c0(z) � 1 = 0, where x(z; n) is an extremal Cournot equi-

librium given z. We know that � (�; n) cannot jump down, since x(z; n) is increasing in

z; � (0+; n) > 0, since c0(0+) = �1; and � (z; n) < 0 for z large, since c0(z) ! 0 as

z ! 1. It follows that, for extremal z, � (z; n) is decreasing in z (indeed, it could not

otherwise be an extremal equilibrium) and therefore, if � (z; n) is strictly increasing (de-

creasing) in n then so will z be. We have that � (z; n) is strictly increasing (decreasing)

in n if and only if x(z; n) is strictly increasing (decreasing) in n. Given that x(z; n) ful�lls

'(x; z; n) � P (xn)+xP 0(xn)� c(z) = 0 and that, at extremal equilibria, ' is decreasing in

x �because (a) '(x; z; n) < 0 for x large (for xn � X we have p � c ) and (b) '(0+; z; n) > 0

(since limx!0
n
P (xn) + xP

0
(xn)

o
> c)�we conclude that x(z; n) is strictly increasing (de-

creasing) in n if and only if '(x; z; n) is, and this happens if P 0(xn) + xP 00(xn) is positive

(negative). �

Proof of Proposition 5: At the symmetric SPE we have that

' (z) � @V (zi; z�i)

@zi
jzi=z= �xc0 (z)

�
1 + (n� 1) P 0 + xP 00

(n+ 1)P 0 + nxP 00

�
� 1

= �x(z; n)c0(z)(1 +G(x; n))� 1 = 0;

where G(x; n) � ((n � 1)=n)(n � E)=(1 + n � E).41 Note that E(X) � 0 because P 00 � 0

and therefore E(X) < 1 + n (so that, for a given symmetric pro�le of investments, there

is a unique and stable symmetric Cournot equilibrium). Hence, dz
�

dn = �@'=@n
@'=@z . We have

@'
@z =

@2V
@z2i

+ (n� 1) @2V
@zi@zj

evaluated at a symmetric solution. Very tedious algebra shows

that @2V
@zi@zj

< 0 when P 0 < 0, P 00 � 0; and P 0P 000 � (P 00)2 � 0; therefore, investments are

strategic substitutes at the �rst stage. Moreover, the second order necessary condition at

41With n + 1 > E; we have that signG = sign fn� Eg. That is, innovation e¤ort is larger (smaller) in

the two-stage (simultaneous) game depending on whether best responses in the Cournot game are downward

(upward) sloping.
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the equilibrium is @2V
@z2i

� 0 and so @'
@z < 0. Under the assumptions it is possible to check

also that @'=@n < 0. �

Proof of Proposition 6: We have (x; z; n) ful�lling:

P (xn=S) + (x=S)P 0(xn=S)� c(z) = 0

�xc0(z)� 1 = 0

(P (xn=S)� c(z))x� z � F = 0

Di¤erentiating totally the equilibrium conditions and evaluating at the equilibrium, we

�nd that
dxe

dS
=

(xc00)(x=S2)P 0

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2

and
dze

dS
= � c0(x=S2)P 0

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2
:

We have that sign
�
dze

dS

	
= sign

�
dxe

dS

	
> 0 because the denominator is negative (strict

concavity of pro�ts of �rm i with respect to xi and zi implies xc00(((n+1)P 0=S)+((xn=S)(P 00=S)))+

(c0)2 < 0 for any n, which in turn implies the result). Furthermore,

dne

dS
=
((n+ 1)P 0 + (x=S)nP 00)c00(x=S2) + (n=S)(c0)2

(2P 0 + (x=S)P 00)c00(x=S) + (c0)2
:

Su¢ cient conditions for dne=dS > 0 are that P 0 + (x=S)P 00 < 0 and �c00x=Sc0 >

nc0=P 0 > 0. We obtain also

dxe

dF
=

c00
�
P 0 + x

SP
00�

�P 0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� ;
dze

dF
=

�c0
�
P 0 + x

SP
00�

�xP 0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� ;
and

dne

dF
=

xc00

S

�
(n+ 1)P 0 + nxP 00

S

�
+ (c0)2

x2

S P
0
�
xc00
S

�
2P 0 + xP 00

S

�
+ (c0)2

� < 0:
As before, we have that xc

00

S

�
2P 0 + xP 00

S

�
+(c0)2 < 0; and the inequality follows because

D = xc00

S

�
(n+ 1)P 0 + nxP 00

S

�
+ (c0)2 < 0: �
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7.2 Examples

I present here the parameterized examples considered in the paper together with summary

sketches of results and computations for each one of them.

7.2.1 Exogenous market structure (restricted entry)

Denote by x and p the symmetric Bertrand equilibria for a given z; and let S parameterize

total market size.

Linear demand (Shapley and Shubik (1969)).42 Let S = 1 and Di (p) =

S
n

�
� � �

�
pi + �

�
pi � 1

n

P
i pi
���

for i = 1; ::; n, where �, �, � are positive constants. We

have H = (� ��p)=n. At a symmetric solution, the direct elasticity of substitution is given

by (1 + �) (� � nx) =nx, and it increases with the substitutability parameter � .43 We have

that @H@n < 0 and that
@h
@n > 0;

@�
@n > 0;

@�
@� > 0; and

@H
@� = 0. For a given symmetric pro�le

z; there is a unique and symmetric Bertrand equilibrium with price p and output per �rm

x. We have that @p@n < 0;
@x
@n < 0,

@x
@� > 0; and

@p
@� < 0. In summary,

@x
@n < 0 and

@x
@� > 0.

Linear demand (Bowley (1924)). Let Di (p) = S

 
an � bnpi + dn

P
j 6=i
pj

!
for i = 1:::; n,

where an = �= (�+ (n� 1) �), bn = (�+ (n� 2) �) = ((�+ (n� 1) �) (�� �)) ; and

dn = �= ((�+ (n� 1) �) (�� �)) and where � > 0 and � > � > 0 are utility parameters.44

At a symmetric solution, the direct elasticity of substitution p= (�� �)x increases with

� . The Chamberlinian DD demand function is given by H = (� � p) = (�+ (n� 1) �),

where @H
@n < 0; @h@n < 0; @�@n > 0; @�@� > 0, and @H

@� < 0. For a given symmetric pro�le z;

there is a unique and symmetric Bertrand equilibrium with price p and output per �rm

x: p = (an + bnc (z)) = (2bn � (n� 1) dn). We have that @p
@n < 0; @x@n < 0, and @p

@� < 0 but

@x
@� < 0. Hence, in this case, increasing competitive pressure by increasing the elasticity of

42This linear demand system can be derived from a quadratic utility function with preferences linear in

the numéraire in which the number of �rms n enters as a parameter. See Vives (1999, Chap. 6).
43For symmetric solutions (with demands arising from the maximization of a quasilinear utility function),

the (direct) elasticity of substitution is given by � = ("ij + "i)
�1, where "ij is the cross�elasticity of inverse

demand, "ij =
qj
pi

@Pi
@qj

. Note also that "ij � 0 and "i � 0.
44This linear demand system can be derived also from a quadratic utility function with preferences linear

in the numéraire. See Vives (1999, Chap. 6).
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substitution decreases output. With this particular demand system we have the unusual

feature that @H@� < 0. In summary,
@x
@n < 0 and

@x
@� < 0.

Location models (Salop (1979)). Although formally in models with localized competi-

tion the demand system is not exchangeable for n > 2; the analysis is easily adapted. A

uniform mass of customers S is distributed within a circle in which n �rms have located

symmetrically and each produces at constant marginal cost c. Consumers have a linear

transportation cost t > 0. Then the demand of �rm i setting price pi (with neighbors

setting a price equal to p) is S
n +

p�pi
t when there is direct competition among �rms. We

can take � � 1=t. Therefore H = S=n and H is independent of p and �. There is neither

price�pressure e¤ect nor a demand e¤ect coming from �. The unique Bertrand equilibrium

is p = c + t=n and � = 1 + nc=t, which for given c is increasing in n and in �. If the

transportation cost is quadratic with parameter t; then the Bertrand equilibrium is given

by p = c+ t=n2.

Constant elasticity demand (CES). Let Di (p) = S (��)
1

1��� p
� 1
1��

i

 
nP
j=1

p
�

��1
j

!� 1��
1���

for

i = 1:::; n; with 0 < � < 1 and also 0 < �� < 1. The (direct) elasticity of substitu-

tion is � = 1= (1� �); for � = 0 goods are independent, and for � = 1 they are per-

fect substitutes. We have that H = S (��)1=(1���) p�1=(1���)n�(1��)=(1���) and @H
@p < 0,

sign
�
@H
@n

	
= sign f� � 1g, and @H

@� > 0. We have that � = 1
1��

�
1� �

n
1��
1���

�
and there-

fore sign
n
@�
@n

o
= sign f1� �g. Restrict attention to the case � < 1 in order to ensure

@H
@n < 0 and @�

@n > 0. We have also that � is strictly increasing in � (and therefore the

Lerner index L will be decreasing in n and �). For a given symmetric pro�le z; there

is a unique and symmetric Bertrand equilibrium with price p and output per �rm x (the

price game is log-supermodular and there is a unique symmetric equilibrium, hence the

symmetric equilibrium is the unique one (Vives (2005)). In equilibrium (for n > 1),

@h
@n > 0, p = (n (1� ��) + � (� � 1)) c= (�n (1� ��) + � (� � 1)), and it is easily checked

that sign
n
@p
@n

o
= sign f� � 1g < 0 and @x

@n < 0. Furthermore,
@p
@� < 0 and

@x
@� > 0 because

@x
@� =

@H
@� +

@H
@p

@p
@� ;

@H
@� > 0;

@H
@p < 0, and

@p
@� < 0. In summary,

@x
@n < 0 and

@x
@� > 0.

Assuming that c (z) = �z�
 with � > 0 and 
 > 0; we can obtain a closed�form solution.

It can be shown that at a symmetric equilibrium B < 0 if and only if �� < 1

+1 . Some
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computations then yield

z� =

�
��� (
S)���1 n1�� (��)�1

n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� 1

��+���1

;

and

p� =

0@(S�
)���1 (��)�1 n1�� �� n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� (
+1)(1���)



1A



1������


:

By Proposition 1 it follows that if �� < 1

+1 then

dz�

dn < 0 and
dz
d� > 0. Indeed, for �� <

1

+1 we have sign

�
dz�

dn

	
= sign f
�� + �� � 1g < 0 and dp�

dn < 0 because sign
n
dp�

dn

o
=

�sign
n


��+���1

��+���1�


o
< 0. It can also be checked that a su¢ cient condition for nz� to be

increasing in n is that � � 1

+1 .

Constant expenditure model. Let Di (p) = Sg (pi)

 
pi

nP
j=1

g (pj)

!�1
; i = 1; :::; n; with

g > 0, g0 < 0; and S > 0. We have that H = S=np and therefore @H
@n < 0 and

@H
@� = 0. We

have also that d�dn > 0 because
@H
@n + (p� c)

@h
@n = �

S
pn2

�
c
p �

g0(p)
g(p)

�
< 0:

Let g (p) � e��p with � > 0 (exponential demand). Observe that goods are inde-

pendent for � = 0 yet are perfect substitutes for � ! 1. Let S = 1. For a given

symmetric pro�le z; there is a unique and symmetric Bertrand equilibrium with price p

and output per �rm x (the price game is log-supermodular and symmetric and there is a

unique symmetric equilibrium, so the symmetric equilibrium is the unique one). We have

p =
�
c+

�
c2 + (4cn= (� (n� 1)))

�1=2�
=2, x = S=np, @p@n < 0;

@x
@n < 0;

@p
@� < 0;

@H
@� = 0; and

@x
@� > 0.

Another example is of the constant elasticity variety (CES): g (p) � p1�� where � > 1

(see Anderson, de Palma and Thisse (1992, Chap. 7)).45 Goods are perfect substitutes

when � ! 1 and are independent when � ! 1.46 We have that h = �S �(n�1)+1
(np)2

,

@h
@p = �S 2(�(n�1)+1)

n2p3
< 0, and � = �(n�1)+1

n (which increases with n and �). For a given

45This is also the speci�cation in Aghion et al. (2002).
46The demand system may arise from the maximization of the utility function W (x0; x) =�P
i x

��1
�

i

� �
��1

x�0 for � > 0, yielding S = I=(1 + �), where I is the income of the representative con-

sumer.
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symmetric pro�le z; there is a unique and symmetric Bertrand equilibrium with price p

and output per �rm x (the price game is log-supermodular and symmetric and there is a

unique symmetric equilibrium, hence the symmetric equilibrium is the unique one). We

have that p = c �(n�1)+1(��1)(n�1) ;
@p
@n = � c

(��1)(n�1)2 < 0; @x
@n < 0; @p

@r = � cn
(��1)2(n�1) < 0,

and @x
@� > 0 because @H

@p < 0 and @H
@� = 0. Assuming that c (z) = �z�
 with � >

and 
 > 0, we can obtain a closed�form solution. It can be shown that B < 0 if and

only if 
+1

 > (��1)(n�1)

(��1)(n�1)+4n , which is always true. The equilibrium solution is z� =

S
(��1)(n�1)
n(�(n�1)+1) and p� = �

�
S

n

�
(��1)(n�1)
�(n�1)+1

� 
+1



��

. Indeed, we have that sign

�
dz�

dn

	
=

sign
n
d
dn

�
(��1)(n�1)
�(n�1)+1

�
< 0
o
and sign

n
dp�

dn

o
=

sign

�
1
n2

�
(��1)(n�1)
�(n�1)+1

�1=

(��1)

�(n�1)+1

�
1� 
+1



n

�(n�1)+1

��
: We have also that dx

�

dn < 0. It

is immediate also that nz� =
S
 (� � 1)
� � n�1 increases with n. We have that L = n

�(n�1)+1 ,

which is decreasing in n and �. The R&D expenditure/sales ratio z�n
p�x�n =

z�n
S = 
(��1)(n�1)

�(n�1)+1

is increasing in � and n.

Logit. Let Di (p) = Se�pi=�
�X

j
e�pj=�

�
, i = 1; :::; n, � > 0. We have that goods

are perfect substitutes for � = 0 and are independent for � = 1, and the elasticity of

substitution is pn=�. Furthermore, H(p) = S=n and h(p) = �(S=n)(1 � 1=n)=�, @H@n < 0;

and @h
@n > 0. We have that � = p(n�1)

�n , which is increasing in n and 1=�. For a given

symmetric pro�le z; there is a unique and symmetric Bertrand equilibrium with price p

and output per �rm x (the price game is log-supermodular and symmetric and there is a

unique symmetric equilibrium, so the symmetric equilibrium is the unique one). We have

that p = c+ n�= (n� 1) ; @p@n < 0; and @x
@n < 0. There is no price�pressure e¤ect because

@H
@p = 0; but there is a demand e¤ect

@Hn
@n < 0. Furthermore, @H@� = 0 and therefore there

is no demand e¤ect. Neither there is a price�pressure e¤ect, (because @H
@p = 0) and hence,

despite that @p@� < 0, we have that
@x
@� = 0. (In this case B < 0 always because

@H
@p = 0.)

As before, assuming that c (z) = �z�
 with � > 0 and 
 > 0 yields a closed�form

solution: p� = n�
n�1 +�

�
S�

n

�� 


+1
and z� =

�
S�

n

� 1

+1
. Given that nz = n




+1 (S�
)

1


 + 1 ,

nz� will be increasing in n. We have that L =
�
1 + n�1

�
S

�
S�

n

� 1

+1

��1
, which is decreasing

in n and 1=� and z�

p�x� =

�
1
S
 +

�
n�1

�
n
S�


� 1

+1

��1
, which is increasing in n and �:

54



7.2.2 Endogenous market structure (free entry)

Constant elasticity demand (CES). For a given n pro�ts at the symmetric equilibrium

(pn; zn) are ��n = zn
1����


�
1� 1

n
1��
1���

�

�
�
1� 1

n
1��
1���

� = zn

�
1

(� � 1) 
 � 1
�
and we can check that sign

n bBo =
sign

n
� 1
1��

�
1� � � �


�
1� 1

n
1��
1���

��o
. As a result, ��n > 0 if and only if bB < 0. This

means that ��n is strictly decreasing in n whenever positive. Furthermore, � � 1

+1 guaran-

tees that bB < 0 for all n. The free�entry number of �rms is ne is the solution to

�n = zn
1� � � �


�
1� 1

n
1��
1���

�

�
�
1� 1

n
1��
1���

� � F = 0

given that variable pro�ts (whenever positive) are strictly decreasing with n. The following

expression implicitly de�nes ne:

�
(
S�)���1 n1�� (��)�1 �

n (1� ��) + � (� � 1)
�n (1� ��) + � (� � 1)

� 1

��+���1

=
F
� (n (1� ��)� (1� �))

(1� � � �
)n (1� ��) + (1� �)�
 :

The expression can be simpli�ed as it appears in Table 2 using the equilibrium elasticity

of demand � = 1
1��

�
1� �

n
1��
1���

�
. Since at a free�entry equilibrium with F > 0 necessarily

��n = F > 0, we have that bB < 0, and therefore dne

dS > 0 (Proposition 2).

With constant elasticity demand and 
 constant, the Lerner index is decreasing in z.

Therefore, increasing S increases z, decreases L, and increases �. The result is that n must

increase. We know also that increasing F increases z (because sign
�
dze

dF

	
= �sign

�
dzn
dn

	
>

0) and increases p (because sign
n
dpe

dF

o
= sign

n
dpn
dn

o
> 0). It can be checked that dz

ene

dF <

0 if � � 1

+1 .

If F = 0 and � � 1

+1 ; then pro�ts are strictly positive for all n and n

e =1. However,

if F = 0, � > 1

+1 ; and �� <

1

+1 , then we still know that pro�ts (whenever positive) are

strictly decreasing with n . Then the free�entry number of �rms is
h

�
(1��)
(1���)(�
+��1)

i
because,

at this n; adding one more �rm would result in negative pro�ts. In this case the free�entry

number of �rms is independent of S, and ne � 1 as long as � > 1

+1 ; as before, under our
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assumptions
�
�� < 1


+1

�
, dz

e

dS > 0 and
dpe

dS < 0. (Note that for n =
�
(1��)

(1���(�
+��1)) we havebB = 0.) Furthermore, dned� < 0 (using the assumption �� < 1

+1).

Constant expenditure-CES demand . For a given n at the symmetric equilibrium (pn; zn),

zn =
S
(��1)(n�1)
n(n��(��1)) and pro�ts are given by �n = S

�
n�
(��1)(n�1)
n((��1)(n�1)+n)

�
. They are strictly de-

creasing in n, and �n > 0 if and only if n > 
 (� � 1) (n� 1). This holds for all n if


 (� � 1) < 1. Positive pro�ts imply that bB < 0 ( bB < 0 if and only if 
+1

n

(��1)(n�1)+n >

(��1)(n�1)
(��1)(n�1)+4n) and and

dpn
dn < 0.

Let F > 0. sing the zero pro�t�entry condition we obtain

ne =
(F � S
) (� � 1) + S +

q
(F (� � 1) + S � S
 (� � 1))2 + 4
 (� � 1)SF�

2F�
;

which is strictly increasing in S provided that 
 (� � 1) < 1: Furthermore, as expected,

dze

dS > 0; dz
e

d� > 0; and sign
�
dne

d�

	
< 0 (recall that @H=@� = 0). We know also that

increasing F increases z (because sign
�
dze

dF

	
= �sign

�
dzn
dn

	
> 0) and increases p (because

sign
n
dpe

dF

o
= �sign

n
dpn
dn

o
> 0). It is immediate then that dneze

dF < 0. The Lerner

index is given by L = n
(��1)(n�1)+n ; and it can be checked that

dL
d� < 0 whenever n >

(� � 1) 
 (n� 1), and that L is increasing in F because n is decreasing in F .

If F = 0 and 
 (� � 1) > 1, then ne =
�
1� 1


(��1)

��1
and ne is independent of S and

decreasing in �.

Logit. Given n, we have pn = c (z) +
�n
n�1 and zn =

�
S�

n

� 1

+1
. Pro�ts (gross of �xed

costs) are given by �n =
S�
n�1 �

�
S�

n

� 1

+1
. For pro�ts to be decreasing in n we need

S�(
+1)
n�1 � n�1

n

�
S�

n

� 1

+1

> 0 (which is equivalent to bB < 0 and is implied by positive pro�ts
�n > 0). We conclude that if �n is positive then it is strictly decreasing in n: The free�entry

number of �rms is implicitly de�ned by [ne] where ne solves S�
n�1�

�
S�

n

� 1

+1

= F . Consistent

with our other results, we have dn
e

dS > 0 and
dze

dS > 0;
dx
d� < 0 or

dx
d� > 0;

dz
d� < 0 or

dz
d� > 0; and

dne

d� > 0 or dne

d� < 0. Increasing F increases ze (because sign
�
dze

dF

	
= sign

�
�dzn
dn

	
> 0),

decreases neze (because neze = (S�
)
1


+1 n




+1 ) and the impact on p is ambiguous (because

sign
n
dpe

dF

o
= sign

n
�dpn
dn

o
). We have that L =

�
1 +

�
�
n�1

��1 �
S�

n

� 1

+1 1

S


��1
and

dL=d� < 0 (taking into account the impact of � on L), and dL=dF > 0 because L decreases

in n and n decreases with F .
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Constant expenditure-CES demand with innovation function c(z) = 1
A+z . Let Di (p) =

Sp��i

�
�jp

1��
j

�
with � > 1 and A > 0. It can be shown that at a symmetric equilibrium

with n > 1, sign fBg = sign f� (� � 1) (n� 1)g < 0 and sign
n bBo = sign f(� � 1) (n� 1)� ng.

We have that for given n, zn =
S(��1)(n�1)
n(n��(��1)) �A+ F and pn =

n(n��(��1))2

S((��1)(n�1))2 . We have also

that sign
�
dzn
dn

	
= sign f�n� (n� 2)� � + 1g < 0, and sign

n
dpn
dn

o
= sign fn� (n� 3) + (� � 1) (n+ 1)g

is positive for n � 3 and ambiguous for n < 3. The free entry number of �rms is ne,

where ne solves S(n�(��1)(n�1))
n(n��(��1)) + A � F = 0. Given that pro�ts are decreasing in n at

a regular free-entry equilibrium (whenever n > 2, this requires � < 2n�1
n�2 ), it follows that

sign
�
dne

dS

	
= sign

�
@�n
@S

	
= sign

n
(n�(��1)(n�1))
n(n��(��1))

o
= sign fF �Ag. (And, obviously, from

Proposition 2 we have that sign
n
� bBo = sign fF �Ag.) As expected dne

d� < 0: Also, in-

creasing F increases z (sign
�
dze

dF

	
= sign

�
�dzn
dn

	
> 0) and has an ambiguous e¤ect on

p (sign
n
dpe

dF

o
= sign

n
�dpn
dn

o
). The Lerner index is L = n

n��(��1) and it can be checked

that sign
�
dL
dF

	
= sign

�
�dne

dF

	
> 0: We can check also that sign

�
dL
d�

	
= sign

n bBo =

sign fA� Fg :
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